Cell determination

  • 文章类型: Journal Article
    脊椎动物眼睛的发育是一个复杂的过程,从前神经管的前后和背腹图案开始,导致眼场的形成。前神经板处的眼场对称分离,然后进行两个对称的逃避,以生成一对光学囊泡。接下来,光学囊泡与表面外胚层衍生的晶状体斑相互内陷会产生双层光学杯。视杯的内层和外层发育成神经视网膜和视网膜色素上皮(RPE),分别。体外产生的视网膜组织,称为视网膜类器官,由人类多能干细胞形成,模仿体内视网膜分化的主要步骤。这篇综述文章总结了我们对早期眼睛发育的理解的最新进展,专注于眼场的形成,视神经囊泡,和早期的光学杯。最近的单细胞转录组学研究与经典的体内遗传和功能研究相结合,以揭示早期眼部发育的一系列细胞机制。解剖了信号转导途径和谱系特异性DNA结合转录因子的功能,以解释在早期眼部发育过程中细胞命运决定的细胞特异性调节机制。同源域(HD)转录因子Otx2,Pax6,Lhx2,Six3和Six6的功能,这是早期眼部发育所必需的,详细讨论。对早期眼部发育机制的全面了解可以深入了解眼部发育异常的分子和细胞基础,如视杯结肠瘤。最后,使用干细胞衍生的视网膜类器官模拟人类发育和遗传性视网膜疾病,为发现视网膜疾病的新疗法提供了机会。
    The development of the vertebrate eyes is a complex process starting from anterior-posterior and dorso-ventral patterning of the anterior neural tube, resulting in the formation of the eye field. Symmetrical separation of the eye field at the anterior neural plate is followed by two symmetrical evaginations to generate a pair of optic vesicles. Next, reciprocal invagination of the optic vesicles with surface ectoderm-derived lens placodes generates double-layered optic cups. The inner and outer layers of the optic cups develop into the neural retina and retinal pigment epithelium (RPE), respectively. In vitro produced retinal tissues, called retinal organoids, are formed from human pluripotent stem cells, mimicking major steps of retinal differentiation in vivo. This review article summarizes recent progress in our understanding of early eye development, focusing on the formation the eye field, optic vesicles, and early optic cups. Recent single-cell transcriptomic studies are integrated with classical in vivo genetic and functional studies to uncover a range of cellular mechanisms underlying early eye development. The functions of signal transduction pathways and lineage-specific DNA-binding transcription factors are dissected to explain cell-specific regulatory mechanisms underlying cell fate determination during early eye development. The functions of homeodomain (HD) transcription factors Otx2, Pax6, Lhx2, Six3 and Six6, which are required for early eye development, are discussed in detail. Comprehensive understanding of the mechanisms of early eye development provides insight into the molecular and cellular basis of developmental ocular anomalies, such as optic cup coloboma. Lastly, modeling human development and inherited retinal diseases using stem cell-derived retinal organoids generates opportunities to discover novel therapies for retinal diseases.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    After the initial discovery of intermediate filament (IF)-forming proteins in 1968, a decade would elapse before they were revealed to comprise a diverse group of proteins which undergo tissue-, developmental stage-, differentiation-, and context-dependent regulation. Our appreciation for just how large (n = 70), conserved, complex, and dynamic IF genes and proteins are became even sharper upon completion of the human genome project. While there has been extraordinary progress in understanding the multimodal roles of IFs in cells and tissues, even revealing them as direct causative agents in a broad array of human genetic disorders, the link between individual IFs and cell differentiation has remained elusive. Here, we review evidence that demonstrates a role for IFs in lineage determination, cell differentiation, and tissue homeostasis. A major theme in this review is the function of IFs as sensors and transducers of mechanical forces, intersecting microenvironmental cues and fundamental processes through cellular redox balance.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

       PDF(Pubmed)

  • 文章类型: Journal Article
    Ocular lens development represents an advantageous system in which to study regulatory mechanisms governing cell fate decisions, extracellular signaling, cell and tissue organization, and the underlying gene regulatory networks. Spatiotemporally regulated domains of BMP, FGF, and other signaling molecules in late gastrula-early neurula stage embryos generate the border region between the neural plate and non-neural ectoderm from which multiple cell types, including lens progenitor cells, emerge and undergo initial tissue formation. Extracellular signaling and DNA-binding transcription factors govern lens and optic cup morphogenesis. Pax6, c-Maf, Hsf4, Prox1, Sox1, and a few additional factors regulate the expression of the lens structural proteins, the crystallins. Extensive crosstalk between a diverse array of signaling pathways controls the complexity and order of lens morphogenetic processes and lens transparency.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

  • 文章类型: Journal Article
    In the direct-developing sea urchinHeliocidaris erythrogramma the first cleavage division bisects the dorsoventral axis of the developing embryo along a frontal plane. In the two-celled embryo one of the blastomeres, the ventral cell (V), gives rise to all pigmented mesenchyme, as well as to the vestibule of the echinus rudiment. Upon isolation, however, the dorsal blastomere (D) displays some regulation, and is able to form a small number of pigmented mesenchyme cells and even a vestibule. We have examined the spatial and temporal determination of cell fates along the dorsoventral axis during subsequent development. We demonstrate that the dorsoventral axis is resident within both cells of the two-celled embryo, but only the ventral pole of this axis has a rigidly fixed identity this early in development. The polarity of this axis remains the same in half-embryos developing from isolated ventral (V) blastomeres, but it can flip 180° in half-embryos developing from isolated dorsal (D) blastomeres. We find that cell fates are progressively determined along the dorsoventral axis up to the time of gastrulation. The ability of dorsal half-embryos to differentiate ventral cell fates diminishes as they are isolated at progressively later stages of development. These results suggest that the determination of cell fates along the dorsoventral axis inH. erythrogramma is regulated via inductive interactions organized by cells within the ventral half of the embryo.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

  • 文章类型: Journal Article
    In the direct-developing sea urchin Heliocidaris erythrogramma the first cleavage division bisects the dorsoventral axis of the developing embryo along a frontal plane. In the two-celled embryo one of the blastomeres, the ventral cell (V), gives rise to all pigmented mesenchyme, as well as to the vestibule of the echinus rudiment. Upon isolation, however, the dorsal blastomere (D) displays some regulation, and is able to form a small number of pigmented mesenchyme cells and even a vestibule. We have examined the spatial and temporal determination of cell fates along the dorsoventral axis during subsequent development. We demonstrate that the dorsoventral axis is resident within both cells of the two-celled embryo, but only the ventral pole of this axis has a rigidly fixed identity this early in development. The polarity of this axis remains the same in half-embryos developing from isolated ventral (V) blastomeres, but it can flip 180° in half-embryos developing from isolated dorsal (D) blastomeres. We find that cell fates are progressively determined along the dorsoventral axis up to the time of gastrulation. The ability of dorsal half-embryos to differentiate ventral cell fates diminishes as they are isolated at progressively later stages of development. These results suggest that the determination of cell fates along the dorsoventral axis in H. erythrogramma is regulated via inductive interactions organized by cells within the ventral half of the embryo.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    Adipose tissue (AT) expansion is the result of two processes: hyperplasia and hypertrophy; and both, directly or indirectly, depend on the adipogenic potential of adipocyte precursor cells (APCs). Glucocorticoids (GCs) have a potent stimulatory effect on terminal adipogenesis; while their effects on early stages of adipogenesis are largely unknown. In the present work, we study, in a model of high GC levels, the adipogenic potential of APCs from retroperitoneal AT (RPAT) and its relationship with RPAT mass expansion. We employed a model of hyper-adiposity (30- and 60-day-old rats) due to high endogenous GC levels induced by neonatal treatment with l-monosodium glutamate (MSG). We found that the RPAT APCs from 30-day-old MSG rats showed an increased adipogenic capacity, depending on the APCs\' competency, but not in their number. Analyses of RPAT adipocyte diameter revealed an increase in cell size, regardless of the rat age, indicating the prevalence of a hypertrophic process. Moreover, functional RPAT alterations worsened in 60-day-old rats, suggesting that the hyperplastic AT expansion found in 30-day-old animals might have a protective role. We conclude that GCs chronic excess affects APCs\' adipogenic capacity, modifying their competency. This change would modulate the hyperplastic/hypertrophic balance determining healthy or unhealthy RPAT expansion and, therefore, its functionality.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    Circadian pacemaker neurons in the Drosophila brain control daily rhythms in locomotor activity. These pacemaker neurons can be subdivided into early or late groups depending on whether rhythms in period (per) and timeless (tim) expression are initiated at the first instar (L1) larval stage or during metamorphosis, respectively. Because CLOCK-CYCLE (CLK-CYC) heterodimers initiate circadian oscillator function by activating per and tim transcription, a Clk-GFP transgene was used to mark when late pacemaker neurons begin to develop. We were surprised to see that CLK-GFP was already expressed in four of five clusters of late pacemaker neurons during the third instar (L3) larval stage. CLK-GFP is only detected in postmitotic neurons from L3 larvae, suggesting that these four late pacemaker neuron clusters are formed before the L3 larval stage. A GFP-cyc transgene was used to show that CYC, like CLK, is also expressed exclusively in pacemaker neurons from L3 larval brains, demonstrating that CLK-CYC is not sufficient to activate per and tim in late pacemaker neurons at the L3 larval stage. These results suggest that most late pacemaker neurons develop days before novel factors activate circadian oscillator function during metamorphosis.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

  • 文章类型: Journal Article
    The ocular lens is a model system for understanding important aspects of embryonic development, such as cell specification and the spatiotemporally controlled formation of a three-dimensional structure. The lens, which is characterized by transparency, refraction and elasticity, is composed of a bulk mass of fiber cells attached to a sheet of lens epithelium. Although lens induction has been studied for over 100 years, recent findings have revealed a myriad of extracellular signaling pathways and gene regulatory networks, integrated and executed by the transcription factor Pax6, that are required for lens formation in vertebrates. This Review summarizes recent progress in the field, emphasizing the interplay between the diverse regulatory mechanisms employed to form lens progenitor and precursor cells and highlighting novel opportunities to fill gaps in our understanding of lens tissue morphogenesis.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

公众号