Carbon-centered radicals

  • 文章类型: Letter
    结果表明,Chao和同事在一篇论文中提供的数据不支持活性“碳自由基”的形成。观察到的ESR光谱的分配和机理解释存在严重缺陷。因此,其他反应性中间体必须负责观察到的肿瘤损伤作用。
    It is shown that data presented in a paper by Chao and co-workers do not support the formation of active \"Carbon Radicals\" as claimed according to the title. The assignments of observed ESR spectra and the mechanistic interpretation are severely flawed. Hence, other reactive intermediates must be responsible for the observed tumor-damaging effects.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    In this study, a hollow sphere-like Co-modified LaFeO3 perovskite catalyst (LFC73O) was developed for peracetic acid (PAA) activation to degrade sulfamethoxazole (SMX). Results indicated that the constructed heterogeneous system achieved a 99.7% abatement of SMX within 30 min, exhibiting preferable degradation performance. Chemical quenching experiments, probe experiments, and EPR techniques were adopted to elucidate the involved mechanism. It was revealed that the superior synergistic effect of electron transfer and oxygen defects in the LFC73O/PAA system enhanced the oxidation ability of PAA. The Co atoms doped into LaFeO3 as the main active site with the original Fe atoms as an auxiliary site exhibited high activity to mediate PAA activation via the Co(III)/Co(II) cycle, generating carbon-centered radicals (RO·) including CH3C(O)O· and CH3C(O)OO·. The oxygen vacancies induced by cobalt substitution also served as reaction sites, facilitating the dissociation of PAA and production of ROS. Furthermore, the degradation pathways were postulated by DFT calculation and intermediates identification, demonstrating that the electron-rich sites of SMX molecules such as amino group, aromatic ring, and S-N bond, were more susceptible to oxidation by reactive species. This study offers a novel perspective on developing catalysts with the coexistence of multiple active units for PAA activation in environmental remediation.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    过氧乙酸是一种新兴的用于废水净化的氧化剂和消毒剂。在这项研究中,我们首先开发了一个全面而准确的模型来阐明反应机理并模拟过乙酸的反应动力学(PAA,基于实验结果和文献的CH3C(=O)OOH)被氯化物(Cl-)活化。多种多样的实验方法(例如,淬火实验,探针化合物降解,电子顺磁共振(EPR)测量)和动力学模型用于确定反应性物种。因此,以碳为中心的自由基和游离氯反应性物质(Cl2和HClO)致力于PAA/Cl-系统中的BPA降解。碳为中心的基团CH3C(=O)OO•,CH3C(=O)O•,CH3OO•,和·CH3极大地加速了BPA的降解,其相应的kCH3C(=O)OO·动力学,BPA=2×108M-1s-1,kCH3C(=O)O•,BPA=2×107M-1s-1,k•CH3,BPA=2×106M-1s-1和kCH3OO•,BPA=2×104M-1s-1。溶解的Cl2(l)物种对于用kCl2降解BPA也很重要,BPA为2×107M-1s-1,远高于kHClO的HClO/ClO-,BPA=1.2×101M-1s-1和kClO-,BPA=9×10-3M-1s-1。虽然游离氯倾向于将BPA转化为雌激素氯化有机产品,以碳为中心的自由基对BPA的主要降解导致无氯产物,减少含盐废水处理过程中消毒副产物的产生。这项研究提高了PAA/Cl-系统中反应动力学和机理以及反应性物种生成的知识。
    Peracetic acid is an emerging oxidant and disinfectant for wastewater purification. In this study, we first developed a comprehensive and accurate model to elucidate the reaction mechanisms and simulate reaction kinetics of peracetic acid (PAA, CH3C(=O)OOH) activated by chloride (Cl-) based on experimental results and literature. A diversity of experiments methods (e.g., quenching experiments, probe compounds degradation, electron paramagnetic resonance (EPR) measurements) and kinetic modeling were used to determine the reactive species. As a result, carbon-centered radicals and free chlorine reactive species (Cl2 and HClO) were devoted to BPA degradation in the PAA/Cl- system. The carbon-centered radicals CH3C(=O)OO•, CH3C(=O)O•, CH3OO•, and •CH3 greatly accelerated BPA degradation with their corresponding kinetics of kCH3C(=O)OO•, BPA = 2 × 108 M-1 s-1, kCH3C(=O)O•, BPA = 2 × 107 M-1 s-1, k•CH3, BPA = 2 × 106 M-1 s-1 and kCH3OO•, BPA = 2 × 104 M-1 s-1. Dissolved Cl2(l) species was also important for BPA degradation with kCl2, BPA of 2 × 107 M-1 s-1, much higher than HClO/ClO- of kHClO, BPA = 1.2 × 101 M-1 s-1 and kClO-, BPA = 9 × 10-3 M-1 s-1. While free chlorine tends to transform BPA to estrogenic chlorinated organic products, the primary degradation of BPA by carbon-centered radicals results in chlorine-free products, reducing the production of disinfection byproducts during the treatment of saline wastewater. This study improves the knowledge of reaction kinetics and mechanism and reactive species generation in the PAA/Cl- system.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    The degradation process of malathion in the acetyl peroxyborate (APB) solution of different APB/malathion molar ratio and in the carbonate-activated APB (APB/CO32-) solution of different pH was studied by 31P NMR technology. In the APB solution, all malathion could be degraded in 47.5 min when the molar ratio of APB/malathion was 60. CO32- could effectively activate APB to degrade all malathion in 10 min at pH of 10 when APB/malathion was 10, which was obviously higher than in APB solution. 1O2, •O2-, •OH and carbon-centered radicals (RC•) could be produced in the APB/CO32- solution, and the degradation of malathion was mainly affected by RC•. The degradation mechanism of malathion in the APB/CO32- solution was proposed based on the research results of malathion degradation process by 31P NMR and active species quenching test, which involves two steps: the first step is the oxidation of malathion to malaoxon by RC•, and the second step is the hydrolysis of malaoxon to dimethyl phosphate via hydroxyl anions nucleophilic addition.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

  • 文章类型: Journal Article
    Alkyl xanthate esters are perhaps best known for their use in deoxygenation chemistry. However, their use in cross-coupling chemistry has not been productive, which is due, in part, to inadequate xanthate activation strategies. Herein, we report the use of O-benzyl xanthate esters, readily derived from alcohols, as radical pronucleophiles in Csp3-Csp2 cross-couplings under Ni/photoredox dual catalysis. Xanthate (C-O) cleavage is found to be reliant on photogenerated (sec-butyl) radical activators to form new carbon-centered radicals primed for nickel-catalyzed cross-couplings. Mechanistic experiments support the fact that the key radical components are formed independently, and relative rates are carefully orchestrated, such that no cross reactivity is observed.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    Thiyl radicals are important intermediates in the redox biology and chemistry of thiols. These radicals can react via hydrogen transfer with various C-H bonds in peptides and proteins, leading to the generation of carbon-centered radicals, and, potentially, to irreversible protein damage. This review summarizes quantitative information on reaction kinetics and product formation, and discusses the significance of these reactions for protein degradation induced by thiyl radical formation.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    Protein thiyl radicals are important intermediates generated in redox processes of thiols and disulfides. Thiyl radicals efficiently react with glutathione and ascorbate, and the common notion is that these reactions serve to eliminate thiyl radicals before they can enter potentially hazardous processes. However, over the past years increasing evidence has been provided for rather efficient intramolecular hydrogen transfer processes of thiyl radicals in proteins and peptides. Based on rate constants published for these processes, we have performed kinetic simulations of protein thiyl radical reactivity. Our simulations suggest that protein thiyl radicals enter intramolecular hydrogen transfer reactions to a significant extent even under physiologic conditions, i.e., in the presence of 30 µM oxygen, 1 mM ascorbate, and 10 mM glutathione. At lower concentrations of ascorbate and glutathione, frequently observed when tissue is exposed to oxidative stress, the extent of irreversible protein thiyl radical-dependent protein modification increases.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

  • 文章类型: Journal Article
    Effects of tryptophan, 5-hydroxytryptophan, serotonin, and melatonin on final product formation during radiolysis of deaerated and oxygen-saturated ethanol and aqueous 1M ethanol solutions were studied. The named amino acids were found to be capable of adding α-hydroxyethyl radicals, thereby suppressing recombination reactions of these species. Unlike melatonin, tryptophan, 5-hydroxytryptophan, and serotonin were able to reduce oxygen-centered radicals being formed on radiation-chemical oxidation of ethanol in the presence of oxygen via electron transfer from the amine nitrogen lone pair.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

公众号