Carbon-Nitrogen Ligases

碳 - 氮连接酶
  • 文章类型: Journal Article
    生物素(维生素B7或维生素H)是一种水溶性B族维生素,可作为羧化酶的辅因子,即,参与脂肪酸和氨基酸的细胞代谢和糖异生的酶;此外,据报道,生物素可能参与基因调控。生物素不是由人类细胞合成的,但它存在于食物中,也是由肠道细菌产生的。人类个体的生物素状态/稳态取决于几个因素,包括在人体生物体内参与生物素回收的酶的效率/缺乏(生物素酶,全羧化酶合成酶),和/或肠道吸收的有效性,这主要是通过钠依赖性多种维生素转运体完成的。在过去的几年里,高/“药理学”剂量的生物素已被提议用于治疗特定的缺陷/缺陷和人类疾病,主要表现出神经和/或皮肤症状,包括生物素酶缺乏症,全羧化酶合成酶缺乏症,和生物素-硫胺素反应性基底节疾病。另一方面,根据食品和药物管理局的警告,美国,高生物素水平可影响临床生物素-(链霉)抗生物素蛋白测定,并因此在关键生物标志物的定量期间导致错误结果。在这篇评论文章中,将介绍并简要讨论可能为上述有关生物素的研究领域提供新见解的最新发现/进展。
    Biotin (vitamin B7, or vitamin H) is a water-soluble B-vitamin that functions as a cofactor for carboxylases, i.e., enzymes involved in the cellular metabolism of fatty acids and amino acids and in gluconeogenesis; moreover, as reported, biotin may be involved in gene regulation. Biotin is not synthesized by human cells, but it is found in food and is also produced by intestinal bacteria. Biotin status/homeostasis in human individuals depends on several factors, including efficiency/deficiency of the enzymes involved in biotin recycling within the human organism (biotinidase, holocarboxylase synthetase), and/or effectiveness of intestinal uptake, which is mainly accomplished through the sodium-dependent multivitamin transporter. In the last years, administration of biotin at high/\"pharmacological\" doses has been proposed to treat specific defects/deficiencies and human disorders, exhibiting mainly neurological and/or dermatological symptoms and including biotinidase deficiency, holocarboxylase synthetase deficiency, and biotin-thiamine-responsive basal ganglia disease. On the other hand, according to warnings of the Food and Drug Administration, USA, high biotin levels can affect clinical biotin-(strept)avidin assays and thus lead to false results during quantification of critical biomarkers. In this review article, recent findings/advancements that may offer new insight in the abovementioned research fields concerning biotin will be presented and briefly discussed.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    金黄色葡萄球菌(S。金黄色葡萄球菌)由于其致病性而在医院和社区环境中都提出了重大挑战。耐药菌株的出现加剧了金黄色葡萄球菌感染,导致死亡率上升。PyrG,三磷酸胞苷(CTP)合酶家族的成员,由于CTP在细胞代谢中的关键作用,因此作为针对金黄色葡萄球菌的关键治疗靶标。然而,金黄色葡萄球菌PyrG的结构和机制细节仍然未知。这里,我们成功表达并纯化了单体PyrG。基于分子对接的结果进行突变实验。根据分子对接的结果,我们进行了突变实验,发现与野生型蛋白相比,Q386A显著降低了CTP合酶的活性,而Y54A几乎完全取消了该活动。金黄色葡萄球菌暴露于激酶抑制剂克唑替尼增加基因pyrG的表达。我们的结果确定了PyrG上CTP合酶活性的两个关键位点,目前PyrG基因表达在克唑替尼治疗期间增加,这可能最终为开发抗金黄色葡萄球菌感染的新药提供有价值的指导。
    Staphylococcus aureus (S. aureus) presents a significant challenge in both nosocomial and community settings due to its pathogenicity. The emergence of drug-resistant strains exacerbates S. aureus infections, leading to increased mortality rates. PyrG, a member of the cytidine triphosphate (CTP) synthase family, serves as a crucial therapeutic target against S. aureus due to the pivotal role of CTP in cellular metabolism. However, the structural and mechanistic details of S. aureus PyrG remains unknown. Here, we successfully expressed and purified monomeric PyrG. Mutational experiments were conducted based on the results of molecular docking. Based on the results of the molecular docking, we carried out mutation experiments and found that Q386A dramatically decreased the CTP synthase activity compared to the wild-type protein, while Y54A almost completely abolished the activity. Exposure of S. aureus to the kinase inhibitor crizotinib increased expression of gene pyrG. Our results identify the two key sites on PyrG for the CTP synthase activity, and present PyrG gene expression increased during the treatment of crizotinib, which may eventually provide valuable guidance for the development of new drugs against S. aureus infections.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    来自黄thalictrum(TfNCS)的(S)-去甲氯胺合酶立体选择性催化多巴胺与4-羟基苯乙醛之间的Pictet-Spengler反应,得到(S)-去甲氯胺。TfNCS可以催化Pictet-Spengler与各种醛和酮的反应,导致不同的四氢异喹啉。这种底物混杂性使TfNCS成为合成精细化学品的非常有前途的酶。了解影响TfNCS活性的含羰基底物的结构和电子签名可以帮助扩展其在不同化合物合成中的应用,并有助于蛋白质优化策略。在这项研究中,在TfNCS催化的Pictet-Spengler反应中,我们研究了醛和酮的分子性质对其反应性的影响。最初,我们从以前的出版物中编译了一个反应性和非反应性化合物库。我们还使用核磁共振进行了酶测定,以鉴定一些反应性和非反应性羰基化合物,然后将其包含在图书馆中。随后,我们使用QSAR和DFT计算来建立底物候选结构和反应性之间的相关性。我们的发现强调了结构和立体电子特征的相关性,包括羰基的亲电性,醛和酮对TfNCS催化的Pictet-Spengler反应的反应性。有趣的是,53个化合物中的7个化合物的实验数据与羰基的亲电性无关。对于这七个化合物,我们确定了它们与TfNCS之间的不利相互作用。我们的结果证明了计算机技术在理解酶混杂性和特异性方面的应用,特别强调机器学习方法,DFT电子结构计算,和分子动力学(MD)模拟。
    The (S)-norcoclaurine synthase from Thalictrum flavum (TfNCS) stereoselectively catalyzes the Pictet-Spengler reaction between dopamine and 4-hydroxyphenylacetaldehyde to give (S)-norcoclaurine. TfNCS can catalyze the Pictet-Spengler reaction with various aldehydes and ketones, leading to diverse tetrahydroisoquinolines. This substrate promiscuity positions TfNCS as a highly promising enzyme for synthesizing fine chemicals. Understanding carbonyl-containing substrates\' structural and electronic signatures that influence TfNCS activity can help expand its applications in the synthesis of different compounds and aid in protein optimization strategies. In this study, we investigated the influence of the molecular properties of aldehydes and ketones on their reactivity in the TfNCS-catalyzed Pictet-Spengler reaction. Initially, we compiled a library of reactive and unreactive compounds from previous publications. We also performed enzymatic assays using nuclear magnetic resonance to identify some reactive and unreactive carbonyl compounds, which were then included in the library. Subsequently, we employed QSAR and DFT calculations to establish correlations between substrate-candidate structures and reactivity. Our findings highlight correlations of structural and stereoelectronic features, including the electrophilicity of the carbonyl group, to the reactivity of aldehydes and ketones toward the TfNCS-catalyzed Pictet-Spengler reaction. Interestingly, experimental data of seven compounds out of fifty-three did not correlate with the electrophilicity of the carbonyl group. For these seven compounds, we identified unfavorable interactions between them and the TfNCS. Our results demonstrate the applications of in silico techniques in understanding enzyme promiscuity and specificity, with a particular emphasis on machine learning methodologies, DFT electronic structure calculations, and molecular dynamic (MD) simulations.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    使用BirA酶对AviTagged重组蛋白进行位点特异性生物素化是一种广泛使用的蛋白质标记技术。然而,由于不完全的生物素化反应和缺乏特定于生物素化蛋白质的纯化方法,当与非生物素化的副产物混合时,纯化生物素化的样品是具有挑战性的。这里,我们已经开发了一种单克隆抗体,该抗体特异性识别非生物素化的AviTag,但不识别生物素化的序列。用与抗体结合的树脂孵育十分钟后,当完全生物素化的材料自由通过时,非生物素化的适合标记的蛋白质被捕获在树脂上。因此,我们的AviTrap(抗AviTag抗体缀合树脂)提供了通过简单的一步纯化富集生物素化AviTagged蛋白的有效解决方案。
    Site specific biotinylation of AviTagged recombinant proteins using BirA enzyme is a widely used protein labeling technology. However, due to the incomplete biotinylation reactions and the lack of a purification method specific for the biotinylated proteins, it is challenging to purify the biotinylated sample when mixed with the non-biotinylated byproduct. Here, we have developed a monoclonal antibody that specifically recognizes the non-biotinylated AviTag but not the biotinylated sequence. After a ten-minute incubation with the resin that is conjugated with the antibody, the non-biotinylated AviTagged protein is trapped on the resin while the fully biotinylated material freely passes through. Therefore, our AviTrap (anti-AviTag antibody conjugated resin) provides an efficient solution for enriching biotinylated AviTagged proteins via a simple one-step purification.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    钙离子作为关键的细胞内信号。当地,钙浓度的瞬时增加可以激活钙传感器蛋白,进而触发下游效应物。在神经元中,钙瞬变在调节神经递质释放和突触可塑性中起重要作用。然而,捕获与这些局部和短暂的钙信号相关的分子事件是具有挑战性的。在这里,我们提出了一种工程化的生物素连接酶,它以钙依赖的方式产生永久性的分子痕迹。酶,钙依赖性生物ID(Cal-ID),生物素化附近的蛋白质在几分钟内响应升高的局部钙水平。生物素化的蛋白质可以通过质谱鉴定并使用显微镜观察。在神经元中,Cal-ID标记是由神经元活动触发的,导致突出的蛋白质生物素化,使大脑中的转录非依赖性活性标记。总之,Cal-ID产生具有高空间分辨率和分子特异性的钙信号和神经元活动的生化记录。
    Calcium ions serve as key intracellular signals. Local, transient increases in calcium concentrations can activate calcium sensor proteins that in turn trigger downstream effectors. In neurons, calcium transients play a central role in regulating neurotransmitter release and synaptic plasticity. However, it is challenging to capture the molecular events associated with these localized and ephemeral calcium signals. Here we present an engineered biotin ligase that generates permanent molecular traces in a calcium-dependent manner. The enzyme, calcium-dependent BioID (Cal-ID), biotinylates nearby proteins within minutes in response to elevated local calcium levels. The biotinylated proteins can be identified via mass spectrometry and visualized using microscopy. In neurons, Cal-ID labeling is triggered by neuronal activity, leading to prominent protein biotinylation that enables transcription-independent activity labeling in the brain. In summary, Cal-ID produces a biochemical record of calcium signals and neuronal activity with high spatial resolution and molecular specificity.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    细菌性疾病在全球范围内造成了巨大的产量损失,随着抗生素耐药性的上升,有一个关键的需要替代抗菌化合物。来自微生物的天然产物(NP)由于其作为具有成本效益和环境友好的杀菌剂的潜力而成为有前途的候选物。然而,许多NPs抗菌活性的精确机制,包括古维菌素(GV),仍然知之甚少。这里,我们试图探索GV如何与鸟苷5'-单磷酸合成酶(GMPs)相互作用,一种在细菌鸟嘌呤合成中至关重要的酶。我们采用了生化和遗传相结合的方法,酶活性测定,定点诱变,生物层干涉术,和分子对接试验评估GV的抗菌活性及其靶向GMPs的机制。结果表明GV能有效抑制GMPs,破坏细菌鸟嘌呤合成。这通过耐药性测定和直接酶抑制研究得到证实。生物层干涉测定法证明了GV与GMPs的特异性结合,依赖5'-单磷酸黄苷。定点诱变鉴定了对GV-GMP相互作用至关重要的关键残基。本研究阐明了GV的抗菌机制,强调其作为农业生物防治剂的潜力。这些发现有助于新型抗菌剂的开发,并强调了探索天然产物对农业疾病管理的重要性。
    Bacterial diseases caused substantial yield losses worldwide, with the rise of antibiotic resistance, there is a critical need for alternative antibacterial compounds. Natural products (NPs) from microorganisms have emerged as promising candidates due to their potential as cost-effective and environmentally friendly bactericides. However, the precise mechanisms underlying the antibacterial activity of many NPs, including Guvermectin (GV), remain poorly understood. Here, we sought to explore how GV interacts with Guanosine 5\'-monophosphate synthetase (GMPs), an enzyme crucial in bacterial guanine synthesis. We employed a combination of biochemical and genetic approaches, enzyme activity assays, site-directed mutagenesis, bio-layer interferometry, and molecular docking assays to assess GV\'s antibacterial activity and its mechanism targeting GMPs. The results showed that GV effectively inhibits GMPs, disrupting bacterial guanine synthesis. This was confirmed through drug-resistant assays and direct enzyme inhibition studies. Bio-layer interferometry assays demonstrated specific binding of GV to GMPs, with dependency on Xanthosine 5\'-monophosphate. Site-directed mutagenesis identified key residues crucial for the GV-GMP interaction. This study elucidates the antibacterial mechanism of GV, highlighting its potential as a biocontrol agent in agriculture. These findings contribute to the development of novel antibacterial agents and underscore the importance of exploring natural products for agricultural disease management.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    乙酰辅酶A羧化酶(ACCs)将乙酰辅酶A转化为丙二酰辅酶A,脂肪酸生物合成和自养碳固定途径的关键步骤。三个功能不同的组件,生物素羧化酶(BC),生物素羧基载体蛋白(BCCP),和羧化酶(CT),以不同的组合分离或部分融合,形成异聚ACC。然而,合并BC-BCCP和单独CT的ACC尚未被识别,其催化机理尚不清楚。这里,我们从金氯氟菌中鉴定出两种BC亚型(BC1和BC2),一种丝状的缺氧光生体,采用3-羟基丙酸酯(3-HP)双循环而不是卡尔文循环进行自养碳固定。我们发现BC1具有融合的BC和BCCP结构域,其中BCCP可以在Lys553残基上被大肠杆菌或C.aurantiacusBirA生物素化。BC1和BC2的晶体结构在3.2和3.0分辨率下,分别,进一步揭示了两个BC1-BC同源二聚体的四聚体,和一个BC2同源二聚体,都表现出相似的BC架构。两个BC1-BC同源二聚体通过部分解析的BCCP结构域的八链β-桶连接。β-桶的破坏导致四聚体在溶液中解离成二聚体并降低生物素羧化酶活性。BCCP结构域的生物素化进一步促进BC1和CTβ-CTα相互作用,形成具有酶活性的ACC,其在体外将乙酰辅酶A转化为丙二酰辅酶A,并通过在大肠杆菌细胞中与重组丙二酰辅酶A还原酶共表达产生3-HP。这项研究揭示了一种异聚ACC,该ACC进化出融合的BC-BCCP,但分离了CTα和CTβ以完成ACC活性。IMPORTANCEAC-CoA羧化酶(ACC)催化脂肪酸生物合成中的限速步骤和各种生物体的自养碳固定途径,使它们成为针对各种感染和疾病的药物发现的有吸引力的目标。虽然对同聚ACC的结构研究,由具有三个亚基的单一蛋白质组成,揭示了“摆动域模型”,其中生物素羧基载体蛋白(BCCP)域在生物素羧化酶(BC)和羧化酶(CT)活性位点之间易位以促进反应,我们对异聚ACCs的亚基组成和催化机理的理解仍然有限.这里,我们从一种古老的缺氧光合细菌中鉴定出一种新的ACC,它进化出融合的BC和BCCP结构域,而是分离CT成分以形成具有酶活性的ACC,其在体外将乙酰辅酶A转化为丙二酰辅酶A,并通过在大肠杆菌细胞中与重组丙二酰辅酶A还原酶共表达产生3-羟基丙酸酯(3-HP)。这些发现扩展了异聚ACCs的多样性和分子进化,并为3-HP生物合成的潜在应用提供了结构基础。
    Acetyl-CoA carboxylases (ACCs) convert acetyl-CoA to malonyl-CoA, a key step in fatty acid biosynthesis and autotrophic carbon fixation pathways. Three functionally distinct components, biotin carboxylase (BC), biotin carboxyl carrier protein (BCCP), and carboxyltransferase (CT), are either separated or partially fused in different combinations, forming heteromeric ACCs. However, an ACC with fused BC-BCCP and separate CT has not been identified, leaving its catalytic mechanism unclear. Here, we identify two BC isoforms (BC1 and BC2) from Chloroflexus aurantiacus, a filamentous anoxygenic phototroph that employs 3-hydroxypropionate (3-HP) bi-cycle rather than Calvin cycle for autotrophic carbon fixation. We reveal that BC1 possesses fused BC and BCCP domains, where BCCP could be biotinylated by E. coli or C. aurantiacus BirA on Lys553 residue. Crystal structures of BC1 and BC2 at 3.2 Å and 3.0 Å resolutions, respectively, further reveal a tetramer of two BC1-BC homodimers, and a BC2 homodimer, all exhibiting similar BC architectures. The two BC1-BC homodimers are connected by an eight-stranded β-barrel of the partially resolved BCCP domain. Disruption of β-barrel results in dissociation of the tetramer into dimers in solution and decreased biotin carboxylase activity. Biotinylation of the BCCP domain further promotes BC1 and CTβ-CTα interactions to form an enzymatically active ACC, which converts acetyl-CoA to malonyl-CoA in vitro and produces 3-HP via co-expression with a recombinant malonyl-CoA reductase in E. coli cells. This study revealed a heteromeric ACC that evolves fused BC-BCCP but separate CTα and CTβ to complete ACC activity.IMPORTANCEAcetyl-CoA carboxylase (ACC) catalyzes the rate-limiting step in fatty acid biosynthesis and autotrophic carbon fixation pathways across a wide range of organisms, making them attractive targets for drug discovery against various infections and diseases. Although structural studies on homomeric ACCs, which consist of a single protein with three subunits, have revealed the \"swing domain model\" where the biotin carboxyl carrier protein (BCCP) domain translocates between biotin carboxylase (BC) and carboxyltransferase (CT) active sites to facilitate the reaction, our understanding of the subunit composition and catalytic mechanism in heteromeric ACCs remains limited. Here, we identify a novel ACC from an ancient anoxygenic photosynthetic bacterium Chloroflexus aurantiacus, it evolves fused BC and BCCP domain, but separate CT components to form an enzymatically active ACC, which converts acetyl-CoA to malonyl-CoA in vitro and produces 3-hydroxypropionate (3-HP) via co-expression with recombinant malonyl-CoA reductase in E. coli cells. These findings expand the diversity and molecular evolution of heteromeric ACCs and provide a structural basis for potential applications in 3-HP biosynthesis.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    CTP合酶(CTPS)催化CTP从头合成的最后步骤。CTPS首先被发现在果蝇卵巢细胞中形成丝状结构,称为胞嘧啶。随后的研究表明,胞嘧啶广泛存在于三个生命域的细胞中。在果蝇卵巢模型中,我们以前的研究主要集中在早期和中期,在后期参与较少。在这项工作中,我们关注果蝇中雌性生殖系细胞的后期阶段。我们使用活细胞成像来捕获第10-12阶段中的胞嘧啶的连续动态。我们注意到两种类型的种系细胞(护士细胞和卵母细胞)中的细胞性的异质性,表现在形态上的显著差异,分布,和动态。令人惊讶的是,我们还发现,同一卵室中相邻的护士细胞随着时间的推移表现出多种动态模式的细胞癌。尽管所描述的动力学可能受到体外孵育条件的影响,我们的观察为晚期果蝇卵子发生过程中胞质的动力学提供了初步的了解。
    CTP synthase (CTPS) catalyzes the final step of de novo synthesis of CTP. CTPS was first discovered to form filamentous structures termed cytoophidia in Drosophila ovarian cells. Subsequent studies have shown that cytoophidia are widely present in cells of three life domains. In the Drosophila ovary model, our previous studies mainly focused on the early and middle stages, with less involvement in the later stages. In this work, we focus on the later stages of female germline cells in Drosophila. We use live-cell imaging to capture the continuous dynamics of cytoophidia in Stages 10-12. We notice the heterogeneity of cytoophidia in the two types of germline cells (nurse cells and oocytes), manifested in significant differences in morphology, distribution, and dynamics. Surprisingly, we also find that neighboring nurse cells in the same egg chamber exhibit multiple dynamic patterns of cytoophidia over time. Although the described dynamics may be influenced by the in vitro incubation conditions, our observation provides an initial understanding of the dynamics of cytoophidia during late-stage Drosophila oogenesis.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    G-四链体(G4s)是对细胞过程和疾病途径至关重要的非规范核酸结构。解密G4相互作用蛋白对于揭示G4的生物学意义至关重要。在这项研究中,我们开发了一种名为G4PID的G4靶向生物素连接酶,仔细评估其在体外和体内的结合亲和力和特异性。利用G4PID,我们设计了一种定制的方法,称为G-四链体相互作用蛋白特异性生物素连接程序(PLGPB),以精确地分析G4相互作用蛋白。在活细胞中实施这种创新策略,我们公布了149个潜在的G4相互作用蛋白,表现出多方面的功能。然后,我们证实了7种候选G4相互作用蛋白(SF3B4,FBL,PP1G,BCL7C,NDUV1,ILF3,GAR1)体外。值得注意的是,我们验证了剪接因子3B亚基4(SF3B4)优先结合富G4的3'剪接位点,相应的剪接位点由G4稳定剂PDS调节,表明G4s在mRNA剪接过程中的调节作用。PLGPB策略可以同时生物素化多种蛋白质,这提供了一个在活细胞中绘制G4相互作用蛋白网络的机会。
    G-quadruplexes (G4s) are noncanonical nucleic acid structures pivotal to cellular processes and disease pathways. Deciphering G4-interacting proteins is imperative for unraveling G4\'s biological significance. In this study, we developed a G4-targeting biotin ligase named G4PID, meticulously assessing its binding affinity and specificity both in vitro and in vivo. Capitalizing on G4PID, we devised a tailored approach termed G-quadruplex-interacting proteins specific biotin-ligation procedure (PLGPB) to precisely profile G4-interacting proteins. Implementing this innovative strategy in live cells, we unveiled a cohort of 149 potential G4-interacting proteins, which exhibiting multifaceted functionalities. We then substantiate the directly binding affinity of 7 candidate G4-interacting-proteins (SF3B4, FBL, PP1G, BCL7C, NDUV1, ILF3, GAR1) in vitro. Remarkably, we verified that splicing factor 3B subunit 4 (SF3B4) binds preferentially to the G4-rich 3\' splice site and the corresponding splicing sites are modulated by the G4 stabilizer PDS, indicating the regulating role of G4s in mRNA splicing procedure. The PLGPB strategy could biotinylate multiple proteins simultaneously, which providing an opportunity to map G4-interacting proteins network in living cells.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    L-茶氨酸是一种具有独特风味和许多治疗作用的氨基酸。其酶法合成已被积极研究,γ-谷氨酰甲基酰胺合成酶(GMAS)是茶氨酸生物合成中很有前途的酶之一。然而,具有GMAS的茶氨酸生物合成途径是高度ATP依赖性的,并且需要外部ATP的供应来实现高浓度的茶氨酸生产。因此,本研究旨在研究聚磷酸激酶2(PPK2)作为六偏磷酸盐的ATP再生体系。此外,采用藻酸盐包封方法将含有gmas和ppk2的全细胞固定在一起,从而提高了茶氨酸生产系统的可重用性,同时减少了ATP的供应。固定后,茶氨酸产量增加到239mM(41.6g/L),使用15mMATP的转化率为79.7%,可重用性增强,保持100%的转化率直至第五循环和60%的转化率直至第八循环。它可以增加长期储存性能,用于未来使用长达35天,具有初始活性的75%活性。总的来说,生产和辅因子再生系统的固定化可以提高茶氨酸生产系统的稳定性和可重用性。
    L-theanine is an amino acid with a unique flavor and many therapeutic effects. Its enzymatic synthesis has been actively studied and γ-Glutamylmethylamide synthetase (GMAS) is one of the promising enzymes in the biological synthesis of theanine. However, the theanine biosynthetic pathway with GMAS is highly ATP-dependent and the supply of external ATP was needed to achieve high concentration of theanine production. As a result, this study aimed to investigate polyphosphate kinase 2 (PPK2) as ATP regeneration system with hexametaphosphate. Furthermore, the alginate entrapment method was employed to immobilize whole cells containing both gmas and ppk2 together resulting in enhanced reusability of the theanine production system with reduced supply of ATP. After immobilization, theanine production was increased to 239 mM (41.6 g/L) with a conversion rate of 79.7% using 15 mM ATP and the reusability was enhanced, maintaining a 100% conversion rate up to the fifth cycles and 60% of conversion up to eighth cycles. It could increase long-term storage property for future uses up to 35 days with 75% activity of initial activity. Overall, immobilization of both production and cofactor regeneration system could increase the stability and reusability of theanine production system.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

公众号