Cantu syndrome

  • 文章类型: Journal Article
    目标:坎图综合征(CS),具有复杂心血管表型的多系统疾病,由ATP敏感性钾(KATP)通道的Kir6.1/SUR2亚基中的GoF变体引起,其特点是全身血管阻力低,以及曲折,扩张的血管,脉搏波速度降低。因此,CS血管功能障碍是多因素的,同时具有肌强直和超弹性成分。为了剖析这种复杂性是否在血管平滑肌细胞(VSMC)内由细胞自主产生,或者作为对病理生理环境的二次反应,我们评估了人类诱导多能干细胞来源的VSMC(hiPSC-VSMC)的电特性和基因表达,从对照和CS患者来源的HiPSC分化,以及在本机鼠标控制和CSVSMC中。
    结果:从野生型(WT)和Kir6.1[V65M](CS)小鼠分离的主动脉和肠系膜动脉VSMC的全细胞电压钳显示电压门控K(Kv)或Ca2电流没有明显差异。Kv和Ca2+电流在从对照分化的验证的hiPSC-VSMC和CS患者来源的hiPSC之间也没有差异。虽然对照hiPSC-VSMC中的吡那地尔敏感的KATP电流与WT小鼠VSMC中的一致,它们在CShiPSC-VSMC中相当大。在电流钳位条件下,CShiPSC-VSMC也是超极化的,与基础钾电导增加一致,并为CS的音调降低和血管阻力降低提供了解释。在分离的CS小鼠主动脉中观察到顺应性增加,并与弹性蛋白mRNA表达增加有关。这与CShiPSC-VSMC中弹性蛋白mRNA的高水平一致,表明CS血管病变的超弹性成分是血管KATPGoF的细胞自主结果。
    结论:结果表明,hiPSC-VSMC重申了与初级VSMC相同的主要离子电流的表达,验证使用这些细胞来研究血管疾病。源自CS患者细胞的hiPSC-VSMC的结果表明,CS血管病变的肌强直和超弹性成分都是由VSMC内KATP过度活动驱动的细胞自主现象。
    OBJECTIVE: Cantu Syndrome (CS), a multisystem disease with a complex cardiovascular phenotype, is caused by GoF variants in the Kir6.1/SUR2 subunits of ATP-sensitive potassium (KATP) channels, and is characterized by low systemic vascular resistance, as well as tortuous, dilated vessels, and decreased pulse-wave velocity. Thus, CS vascular dysfunction is multifactorial, with both hypomyotonic and hyperelastic components. To dissect whether such complexities arise cell-autonomously within vascular smooth muscle cells (VSMCs), or as secondary responses to the pathophysiological milieu, we assessed electrical properties and gene expression in human induced pluripotent stem cell-derived VSMCs (hiPSC-VSMCs), differentiated from control and CS patient-derived hiPSCs, and in native mouse control and CS VSMCs.
    RESULTS: Whole-cell voltage-clamp of isolated aortic and mesenteric arterial VSMCs isolated from wild type (WT) and Kir6.1[V65M] (CS) mice revealed no clear differences in voltage-gated K+ (Kv) or Ca2+ currents. Kv and Ca2+ currents were also not different between validated hiPSC-VSMCs differentiated from control and CS patient-derived hiPSCs. While pinacidil-sensitive KATP currents in control hiPSC-VSMCs were consistent with those in WT mouse VSMCs, they were considerably larger in CS hiPSC-VSMCs. Under current-clamp conditions, CS hiPSC-VSMCs were also hyperpolarized, consistent with increased basal K conductance, and providing an explanation for decreased tone and decreased vascular resistance in CS. Increased compliance was observed in isolated CS mouse aortae, and was associated with increased elastin mRNA expression. This was consistent with higher levels of elastin mRNA in CS hiPSC-VSMCs, suggesting that the hyperelastic component of CS vasculopathy is a cell-autonomous consequence of vascular KATP GoF.
    CONCLUSIONS: The results show that hiPSC-VSMCs reiterate expression of the same major ion currents as primary VSMCs, validating the use of these cells to study vascular disease. Results in hiPSC-VSMCs derived from CS patient cells suggest that both the hypomyotonic and hyperelastic components of CS vasculopathy are cell-autonomous phenomena driven by KATP overactivity within VSMCs.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Review
    背景:Cantu综合征是一种罕见且复杂的多系统疾病,其特征是多毛症,面部畸形,骨软骨增生和心脏异常。全世界报告的病例只有150例,由于分子测试和越来越多的文献进一步表征了该综合征及其一些最重要的特征,Cantu综合征现在获得了更广泛的认可。先前在文献中描述的心血管病理学包括心脏肥大,心包积液,血管扩张和弯曲,和其他先天性心脏缺陷。然而,Cantu综合征患者的心血管受累差异很大.在某些情况下,它可能是广泛和严重的,需要手术管理和长期随访。
    方法:在此,我们报告一例14岁女性,其病因不明,心包积液恶化,同心左心室肥厚的超声心动图发现,轻度扩张的主动脉根和升主动脉。她的病史值得注意的是咯血和继发于多个主动脉肺脉的肺出血,随后在儿童早期被栓塞。她最初用布洛芬和秋水仙碱管理,但继续恶化,最终需要一个心包窗口来处理难治性心包积液。在随后的访问中获得的成像研究显示,头部有多个扩张和曲折的血管,脖子,胸部,还有骨盆.派出了一个心肌病分子研究小组,在ABCC9基因中发现了一种致病变异,确认常染色体显性遗传Cantu综合征的分子诊断。
    结论:Cantu综合征常出现血管异常和明显的心脏受累,然而,目前尚无既定的筛查建议或监测方案.多毛症的三合会,面部畸形,任何患者的原因不明的心血管受累都应引起Cantu综合征的怀疑,需要进一步调查.临床和/或分子诊断为Cantu综合征的患者应进行初始心脏评估和随访。此外,应利用全身成像来评估血管受累的程度,并指导长期监测和护理.
    Cantu syndrome is a rare and complex multisystem disorder characterized by hypertrichosis, facial dysmorphism, osteochondroplasia and cardiac abnormalities. With only 150 cases reported worldwide, Cantu syndrome is now gaining wider recognition due to molecular testing and a growing body of literature that further characterizes the syndrome and some of its most important features. Cardiovascular pathology previously described in the literature include cardiomegaly, pericardial effusion, vascular dilation and tortuosity, and other congenital heart defects. However, cardiovascular involvement is highly variable amongst individuals with Cantu syndrome. In some instances, it can be extensive and severe requiring surgical management and long term follow up.
    Herein we report a case of a fourteen-year-old female who presented with worsening pericardial effusion of unknown etiology, and echocardiographic findings of concentric left ventricular hypertrophy, a mildly dilated aortic root and ascending aorta. Her medical history was notable for hemoptysis and an episode of pulmonary hemorrhage secondary to multiple aortopulmonary collaterals that were subsequently embolized in early childhood. She was initially managed with Ibuprofen and Colchicine but continued to worsen, and ultimately required a pericardial window for the management of refractory pericardial effusion. Imaging studies obtained on subsequent visits revealed multiple dilated and tortuous blood vessels in the head, neck, chest, and pelvis. A cardiomyopathy molecular studies panel was sent, and a pathogenic variant was identified in the ABCC9 gene, confirming the molecular diagnosis of autosomal dominant Cantu syndrome.
    Vascular anomalies and significant cardiac involvement are often present in Cantu syndrome, however there are currently no established screening recommendations or surveillance protocols in place. The triad of hypertrichosis, facial dysmorphism, and unexplained cardiovascular involvement in any patient should raise suspicion for Cantu syndrome and warrant further investigation. Initial cardiac evaluation and follow up should be indicated in any patient with a clinical and/or molecular diagnosis of Cantu syndrome. Furthermore, whole body imaging should be utilized to evaluate the extent of vascular involvement and dictate long term monitoring and care.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    暂无摘要。
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    (1) Background: Cantu syndrome (CS) arises from gain-of-function (GOF) mutations in the ABCC9 and KCNJ8 genes, which encode ATP-sensitive K+ (KATP) channel subunits SUR2 and Kir6.1, respectively. Most CS patients have mutations in SUR2, the major component of skeletal muscle KATP, but the consequences of SUR2 GOF in skeletal muscle are unknown. (2) Methods: We performed in vivo and ex vivo characterization of skeletal muscle in heterozygous SUR2[A478V] (SUR2wt/AV) and homozygous SUR2[A478V] (SUR2AV/AV) CS mice. (3) Results: In SUR2wt/AV and SUR2AV/AV mice, forelimb strength and diaphragm amplitude movement were reduced; muscle echodensity was enhanced. KATP channel currents recorded in Flexor digitorum brevis fibers showed reduced MgATP-sensitivity in SUR2wt/AV, dramatically so in SUR2AV/AV mice; IC50 for MgATP inhibition of KATP currents were 1.9 ± 0.5 × 10-5 M in SUR2wt/AV and 8.6 ± 0.4 × 10-6 M in WT mice and was not measurable in SUR2AV/AV. A slight rightward shift of sensitivity to inhibition by glibenclamide was detected in SUR2AV/AV mice. Histopathological and qPCR analysis revealed atrophy of soleus and tibialis anterior muscles and up-regulation of atrogin-1 and MuRF1 mRNA in CS mice. (4) Conclusions: SUR2[A478V] \"knock-in\" mutation in mice impairs KATP channel modulation by MgATP, markedly so in SUR2AV/AV, with atrophy and non-inflammatory edema in different skeletal muscle phenotypes.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

       PDF(Pubmed)

  • 文章类型: Case Reports
    Cantu syndrome is an autosomal dominant disorder, first described by Cantu in 1982, that is characterized by congenital hypertrichosis, characteristic facial anomalies and cardiomegaly. Recent investigations have revealed that this syndrome is caused by mutations of ABCC9, which encodes a regulatory subunit of SUR2, an adenosine triphosphate-mediated potassium channel opener, expressed not only in smooth muscle but also in hair follicles. However, the abnormalities of skin and hair in patients with Cantu syndrome have not been well explored. We herein report three Japanese patients with Cantu syndrome and describe their specific skin manifestations and alterations in the histopathology of their hair follicles and sebaceous glands. Similar alterations were shared among those three patients and may be related to the function of SUR2, namely the regulation of hair follicle growth, because SUR2 is a known pharmacological target of minoxidil.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

  • 文章类型: Case Reports
    When encountering patients with markedly dilated and tortuous retinal vessels, Wyburn-Mason syndrome (WMS) or racemous angiomatosis (phacomatosis) is commonly thought of as the archetypal entity that can produce these findings. We describe a patient with Cantu syndrome with phenotypical findings identical to those seen in patients with WMS and want to highlight this as another entity that can present with tortuous and dilated retinal vessels.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

  • 文章类型: Journal Article
    The adenosine triphosphate-sensitive potassium (KATP) channel opener diazoxide (DZX) prevents myocyte volume derangement and reduced contractility secondary to stress. KATP channels are composed of pore-forming (Kir6.1 or Kir6.2) and regulatory (sulfonylurea receptor, SUR1 or SUR2) subunits. Gain of function (GOF) of Kir6.1 subunits has been implicated in cardiac pathology in Cantu syndrome in humans (cardiomegaly, lymphedema, and pericardial effusions). We hypothesized that GOF of Kir6.1 subunits would result in altered myocyte response to stress.
    Isolated cardiac myocytes from wild type (WT) and transgenic Kir6.1GOF mice were exposed to Tyrode\'s physiologic solution for 20 min, test solution (Tyrode\'s or stress [hyperkalemic cardioplegia {CPG, known myocyte stress}] +/- KATP channel opener DZX), followed by Tyrode\'s for 20 min. Myocyte volume and contractility were measured and compared.
    WT myocytes demonstrated significant swelling in response to stress, but significantly less swelling was seen in Kir6.1GOF myocytes. DZX prevented swelling secondary to CPG in WT but resulted in a nonsignificant reduction in swelling in Kir6.1GOF myocytes. Both WT and Kir6.1GOF myocytes demonstrated a reduction in contractility during stress, although this was only significant in Kir6.1GOF myocytes. DZX was not associated with an improvement in contractility in Kir6.1GOF myocytes following stress.
    Similar to previous results in Kir6.1(-/-) myocytes, Kir6.1GOF myocytes demonstrate resistance (less volume derangement) to stress of cardioplegia. Understanding the role of Kir6.1 in myocyte response to stress may aid in the treatment of patients with Cantu syndrome and warrants further investigation.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

  • 文章类型: Journal Article
    ATP-sensitive potassium (KATP) channels play fundamental roles in the regulation of endocrine, neural and cardiovascular function. Small-molecule inhibitors (e.g., sulfonylurea drugs) or activators (e.g., diazoxide) acting on SUR1 or SUR2 have been used clinically for decades to manage the inappropriate secretion of insulin in patients with Type 2 diabetes, hyperinsulinism and intractable hypertension. More recently, the discovery of rare disease-causing mutations in KATP channel-encoding genes has highlighted the need for new therapeutics for the treatment of certain forms of neonatal diabetes mellitus, congenital hyperinsulinism and Cantu syndrome. Here, we provide a high-level overview of the pathophysiology of these diseases and discuss the development of a flexible high-throughput screening platform to enable the development of new classes of KATP channel modulators.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

  • 文章类型: Comparative Study
    背景:KATP通道亚基Kir6.1和SUR2中的功能增益(GOF)突变导致Cantu综合征(CS),以多种心血管异常为特征的疾病。
    目的:本研究的目的是更好地确定心脏中这种GOF突变的电生理后果。
    方法:我们产生了在α-肌球蛋白重链(α-MHC)启动子控制下表达ATP不敏感Kir6.1[G343D]亚基的转基因小鼠(Kir6.1-GOF),特异性地靶向心肌细胞中的基因表达,并对分离的心室肌细胞进行膜片钳实验,对麻醉小鼠进行侵入性电生理实验。
    结果:在Kir6.1-GOF心室肌细胞中,KATP通道显示ATP敏感性降低,但电流密度无明显变化。Kir6.1-GOF小鼠动态心电图记录显示房室结传导异常和交界性节律。侵入性电生理分析显示,通过房室结的传导和传导衰竭减慢,但对心房或心室异位活动的敏感性没有增加。从CS患者记录的表面ECG也显示出一级房室传导阻滞和束状传导阻滞。
    结论:心脏KATPGOF的主要电生理后果是传导系统,特别是AV节点,导致携带KATPGOF突变的CS患者的传导异常。
    BACKGROUND: Gain-of-function (GOF) mutations in the KATP channel subunits Kir6.1 and SUR2 cause Cantu syndrome (CS), a disease characterized by multiple cardiovascular abnormalities.
    OBJECTIVE: The purpose of this study was to better determine the electrophysiologic consequences of such GOF mutations in the heart.
    METHODS: We generated transgenic mice (Kir6.1-GOF) expressing ATP-insensitive Kir6.1[G343D] subunits under α-myosin heavy chain (α-MHC) promoter control, to target gene expression specifically in cardiomyocytes, and performed patch-clamp experiments on isolated ventricular myocytes and invasive electrophysiology on anesthetized mice.
    RESULTS: In Kir6.1-GOF ventricular myocytes, KATP channels showed decreased ATP sensitivity but no significant change in current density. Ambulatory ECG recordings on Kir6.1-GOF mice revealed AV nodal conduction abnormalities and junctional rhythm. Invasive electrophysiologic analyses revealed slowing of conduction and conduction failure through the AV node but no increase in susceptibility to atrial or ventricular ectopic activity. Surface ECGs recorded from CS patients also demonstrated first-degree AV block and fascicular block.
    CONCLUSIONS: The primary electrophysiologic consequence of cardiac KATP GOF is on the conduction system, particularly the AV node, resulting in conduction abnormalities in CS patients who carry KATP GOF mutations.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Case Reports
    Cantu syndrome is an autosomal dominant overgrowth syndrome associated with facial dysmorphism, congenital hypertrichosis, and cardiomegaly. Some affected individuals show bone undermodeling of variable severity. Recent investigations revealed that the disorder is caused by a mutation in ABCC9, encoding a regulatory SUR2 subunit of an ATP-sensitive potassium channel mainly expressed in cardiac and skeletal muscle as well as vascular smooth muscle. We report here on a Japanese family with this syndrome. An affected boy and his father had a novel missense mutation in ABCC9. Each patient had a coarse face and hypertrichosis. However, cardiomegaly was seen only in the boy, and macrosomia only in the father. Skeletal changes were not evident in either patient. Craniosynostosis in the boy and the development of aortic aneurysm in the father are previously undescribed associations with Cantu syndrome.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

公众号