Ca(v)2.3

Ca (V) 2.3
  • 文章类型: Journal Article
    The Rad, Rem, Rem2, and Gem/Kir (RGK) sub-family of small GTP-binding proteins are crucial in regulating high voltage-activated (HVA) calcium channels. RGK proteins inhibit calcium current by either promoting endocytosis or reducing channel activity. They all can associate directly with Ca2+ channel β subunit (CaVβ), and the binding between CaVα1/CaVβ appears essential for the endocytic promotion of CaV1.X, CaV2.1, and CaV2.2 channels. In this study, we investigated the inhibition of CaV2.3 channels by RGK proteins in the absence of CaVβ. To this end, Xenopus laevis oocytes expressing CaV2.3 channels devoid of auxiliary subunit were injected with purified Gem and Rem and found that only Gem had an effect. Ca currents and charge movements were reduced by injection of Gem, pointing to a reduction in the number of channels in the plasma membrane. Since this reduction was ablated by co-expression of the dominant-negative mutant of dynamin K44A, enhanced endocytosis appears to mediate this reduction in the number of channels. Thus, Gem inhibition of CaV2.3 channels would be the only example of a CaVβ independent promotion of dynamin-dependent endocytosis.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    The pituitary adenylate cyclase-activating polypeptide (PACAP)-27 modulates various biological processes, from the cellular level to function specification. However, the cardiac actions of this neuropeptide are still under intense studies. Using control (+|+) and mice lacking (-|-) either R-type (Cav2.3) or T-type (Cav3.2) Ca2+ channels, we investigated the effects of PACAP-27 on cardiac activity of spontaneously beating isolated perfused hearts. Superfusion of PACAP-27 (20nM) caused a significant increase of baseline heart frequency in Cav2.3(+|+) (156.9±10.8 to 239.4±23.4 bpm; p<0.01) and Cav2.3(-|-) (190.3±26.4 to 270.5±25.8 bpm; p<0.05) hearts. For Cav3.2, the heart rate was significantly increased in Cav3.2(-|-) (133.1±8.5 bpm to 204.6±27.9 bpm; p<0.05) compared to Cav3.2(+|+) hearts (185.7±11.2 bpm to 209.3±22.7 bpm). While the P wave duration and QTc interval were significantly increased in Cav2.3(+|+) and Cav2.3(-|-) hearts following PACAP-27 superfusion, there was no effect in Cav3.2(+|+) and Cav3.2(-|-) hearts. The positive chronotropic effects observed in the four study groups, as well as the effect on P wave duration and QTc interval were abolished in the presence of Ni2+ (50μM) and PACAP-27 (20nM) in hearts from Cav2.3(+|+) and Cav2.3(-|-) mice. In addition to suppressing PACAP\'s response, Ni2+ also induced conduction disturbances in investigated hearts. In conclusion, the most Ni2+-sensitive Ca2+ channels (R- and T-type) may modulate the PACAP signaling cascade during cardiac excitation in isolated mouse hearts, albeit to a lesser extent than other Ni2+-sensitive targets.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

  • 文章类型: Journal Article
    Cav2.3 (R-type) voltage-activated Ca(2+) channels (VACCs), encoded by the calcium channel, voltage-dependent, R-type, α1E subunit (CACNA1E) gene, are responsible for transmission of somatic inflammatory pain, and activation of antinociception elicited by visceral inflammatory pain stimuli. Carriers of the minor G allele of the rs3845446 single-nucleotide polymorphism (SNP) of the CACNA1E gene reportedly exhibit a decrease in opioid requirements to control typical somatic inflammatory pain after orthognathic surgery (ie, a painful cosmetic surgery), suggesting the downregulation of Cav2.3 VACC function that is responsible for transmission of somatic inflammatory pain in these carriers. Gastrointestinal surgery involves somatic and visceral inflammatory pain, in which visceral inflammatory pain stimuli activate Cav2.3 VACC-mediated antinociception. Unknown is whether pain-related phenotypes after gastrointestinal surgery are affected in these carriers. The present study used a correlational design to examine the effect of the rs3845446 SNP on postoperative pain-related phenotypes in 2 groups of patients who underwent gastrointestinal surgery. Carriers of the minor G allele had greater opioid requirements after laparoscopic colectomy when intravenous patient-controlled analgesia was used, and reported higher pain scores after open gastrointestinal surgery when postoperative analgesia was managed with continuous epidural analgesia and rescue analgesics. These results suggest that pain-related phenotypes after gastrointestinal surgery are enhanced in carriers of the minor G allele of the rs3845446 SNP, possibly through impairment of Cav2.3 VACC function that is responsible for the activation of visceral inflammatory pain stimulus-elicited antinociception.
    Carriers of the minor allele of the rs3845446 SNP of the CACNA1E gene required more opioid or reported higher pain scores after gastrointestinal surgery, and required less opioid after orthognathic surgery. The difference may result from the presence of visceral inflammatory pain stimulus that activates Cav2.3 VACCs-mediated antinociception.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

公众号