CRISPRa

CRISPRa
  • 文章类型: Journal Article
    CRISPR-Cas12a基因组工程系统已广泛应用于植物研究和作物育种。迄今为止,抗CRISPR-Cas12a系统的性能和使用尚未在植物中完全确立。这里,我们进行了计算机模拟分析,以确定Cas12a的推定抗CRISPR系统。这些推定的抗CRISPR蛋白,以及已知的抗CRISPR蛋白,评估它们在体内和植物中抑制Cas12a切割活性的能力。在所有测试的抗CRISPR蛋白中,AcrVA1显示对大肠杆菌中Mb2Cas12a和LbCas12a的强烈抑制。进一步的试验表明,AcrVA1抑制了LbCas12a介导的水稻原生质体和稳定转基因株系的基因组编辑。令人印象深刻的是,AcrVA1的共表达减轻了CRISPR-LbCas12a的脱靶效应,正如全基因组测序所揭示的。此外,表达AcrVA1的转基因植物对LbCas12a介导的基因组编辑表现出不同程度的抑制,代表了一种微调基因组编辑效率的新方法。通过控制AcrVA1的时间和空间表达,我们表明可以在植物中实现诱导型和组织特异性基因组编辑。此外,我们证明AcrVA1也抑制基于LbCas12a的CRISPR激活(CRISPRa),基于这一原理,我们建立了逻辑门来打开和关闭植物细胞中的靶基因。一起,我们已经在植物中建立了有效的抗CRISPR-Cas12a系统,并展示了其在减轻脱靶效应方面的多功能应用。微调基因组编辑效率,实现基因组编辑的时空控制,并产生用于控制植物细胞中靶基因表达的合成逻辑门。
    CRISPR-Cas12a genome engineering systems have been widely used in plant research and crop breeding. To date, the performance and use of anti-CRISPR-Cas12a systems have not been fully established in plants. Here, we conduct in silico analysis to identify putative anti-CRISPR systems for Cas12a. These putative anti-CRISPR proteins, along with known anti-CRISPR proteins, are assessed for their ability to inhibit Cas12a cleavage activity in vivo and in planta. Among all anti-CRISPR proteins tested, AcrVA1 shows robust inhibition of Mb2Cas12a and LbCas12a in E. coli. Further tests show that AcrVA1 inhibits LbCas12a mediated genome editing in rice protoplasts and stable transgenic lines. Impressively, co-expression of AcrVA1 mitigates off-target effects by CRISPR-LbCas12a, as revealed by whole genome sequencing. In addition, transgenic plants expressing AcrVA1 exhibit different levels of inhibition to LbCas12a mediated genome editing, representing a novel way of fine-tuning genome editing efficiency. By controlling temporal and spatial expression of AcrVA1, we show that inducible and tissue specific genome editing can be achieved in plants. Furthermore, we demonstrate that AcrVA1 also inhibits LbCas12a-based CRISPR activation (CRISPRa) and based on this principle we build logic gates to turn on and off target genes in plant cells. Together, we have established an efficient anti-CRISPR-Cas12a system in plants and demonstrate its versatile applications in mitigating off-target effects, fine-tuning genome editing efficiency, achieving spatial-temporal control of genome editing, and generating synthetic logic gates for controlling target gene expression in plant cells.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    荧光泛素化细胞周期抑制剂(FUCCI)已被引入来监测活细胞中的细胞周期活性,包括人诱导多能干细胞(hiPSC)和衍生的细胞类型。我们最近开发了hiPSC,该hiPSC具有dCas9VPR的稳定表达,可用于内源性基因激活,并开发了带黄嘌呤标签的ACTN2细胞系,以监测肌细胞中的肌节发育和功能。这里,我们提出了双重和三重转基因hiPSC系,通过FUCCI有和没有dCas9VPR的基因组整合到ROSA26和AAVS1基因座中,分别,在先前引入的ACTN2-Citrine系中。在新的hiPSC系中证明了转基因的功能性,我们介绍的是Myo-CCER和CraCCER。
    The fluorescence ubiquitination cell cycle inhibitor (FUCCI) has been introduced to monitor cell cycle activity in living cells, including human induced pluripotent stem cells (hiPSC) and derived cell types. We have recently developed hiPSC with stable expression of dCas9VPR for endogenous gene activation and a Citrine-tagged ACTN2 cell line to monitor sarcomere development and function in muscle cells. Here, we present dual and triple transgenic hiPSC lines developed by genomic integration of FUCCI with and without dCas9VPR into the ROSA26 and AAVS1 loci, respectively, in the previously introduced ACTN2-Citrine line. Functionality of the transgenes was demonstrated in the novel hiPSC line, which we introduce as Myo-CCER and CraCCER.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    暂无摘要。
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    目的:我们探索仅通过CRISPR激活(CRISPRa)的内源性基因的转录激活来产生人诱导多能干细胞(iPSCs)。方法:靶向有限的一组基因座的最少数量的人特异性指导RNA与独特的小分子混合物(CRISPRa-SM)一起使用。结果:通过CRISPRa-SM高效产生iPSC克隆,表达一般和幼稚的iPSC标记,并与使用常规重编程方法生成的高质量iPSC成簇。通过体外和体内评估,iPSC显示出基因组稳定性和强大的多能潜能。结论:CRISPRa-SM通过直接和多重基因座激活生成的人iPSC促进了独特且可能更安全的细胞重编程过程,以帮助在细胞治疗和再生医学中的潜在应用。
    组合的化学和CRISPRa介导的方法导致人iPSC的有效产生。
    Aim: We explored the generation of human induced pluripotent stem cells (iPSCs) solely through the transcriptional activation of endogenous genes by CRISPR activation (CRISPRa). Methods: Minimal number of human-specific guide RNAs targeting a limited set of loci were used with a unique cocktail of small molecules (CRISPRa-SM). Results: iPSC clones were efficiently generated by CRISPRa-SM, expressed general and naive iPSC markers and clustered with high-quality iPSCs generated using conventional reprogramming methods. iPSCs showed genomic stability and robust pluripotent potential as assessed by in vitro and in vivo. Conclusion: CRISPRa-SM-generated human iPSCs by direct and multiplexed loci activation facilitating a unique and potentially safer cellular reprogramming process to aid potential applications in cellular therapy and regenerative medicine.
    Combined chemical and CRISPRa-mediated approach leads to efficient generation of human iPSCs.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    LAMA2相关的先天性肌营养不良(LAMA2-CMD),以层粘连蛋白-α2缺乏为特征,使人衰弱,最终致命。迄今为止,临床上没有有效的治疗方法.层粘连蛋白-α1与层粘连蛋白-α2具有显着的相似性,已被证明是可行的补偿性修饰剂。为了评估其临床适用性,建立Lama2外显子-3缺失小鼠模型(dyH/dyH)。dyH/dyH小鼠表现出早期致死性和典型的LAMA2-CMD表型,允许评估各种端点。在用基于协同激活介质(SAM)的CRISPRa介导的Lama1上调治疗的dyH/dyH小鼠中(总剂量:1.0×1011载体基因组/小鼠),观察到中位生存期几乎翻了一番,以及重量和抓地力的改善。MRI也证明了显著的治疗效果,血清生化指标,和肌肉病理学研究。我们表明,用LAMA1上调治疗LAMA2-CMD是可行的,早期干预可以减轻症状并延长寿命。此外,我们揭示了LAMA1上调的局限性,包括高剂量死亡率和非持续表达,这需要在未来的研究中进一步优化。
    LAMA2-related congenital muscular dystrophy (LAMA2-CMD), characterized by laminin-α2 deficiency, is debilitating and ultimately fatal. To date, no effective therapy has been clinically available. Laminin-α1, which shares significant similarities with laminin-α2, has been proven as a viable compensatory modifier. To evaluate its clinical applicability, we establish a Lama2 exon-3 deletion mouse model (dyH/dyH). The dyH/dyH mice exhibit early lethality and typical LAMA2-CMD phenotypes, allowing the evaluation of various endpoints. In dyH/dyH mice treated with synergistic activation mediator-based CRISPRa-mediated Lama1 upregulation, a nearly doubled median survival is observed, as well as improvements in weight and grip. Significant therapeutical effects are revealed by MRI, serum biochemical indices, and muscle pathology studies. Treating LAMA2-CMD with LAMA1 upregulation is feasible and that early intervention can alleviate symptoms and extend lifespan. Additionally, we reveal limitations of LAMA1 upregulation, including high-dose mortality and non-sustained expression, which require further optimization in future studies.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    病原结构变异(SVs)与各种类型的癌症和罕见的遗传疾病有关。最近的研究已经使用Cas9核酸酶与配对的引导RNA(gRNA)来产生靶向的染色体重排,专注于生产导致癌症的融合蛋白,而用于整流SV的精确基因组编辑研究有限。在这项研究中,我们发现了一种新的复杂基因组重排(CGR),特别是带有删除的EYA1倒置,与分支-器官-肾/分支-器官综合征有关。为了解决这个问题,测试了两种基于CRISPR的方法。首先,我们使用Cas9核酸酶和针对患者基因组定制的配对gRNA。双重CRISPR-Cas9系统可有效纠正患者来源的成纤维细胞的中心旁倒置,有效恢复EYA1mRNA和蛋白的表达,以及它的转录活性需要调节靶基因的表达。此外,我们使用了CRISPR激活(CRISPRa),这导致患者来源的成纤维细胞中EYA1mRNA表达上调。此外,CRISPRa显著提高了靶基因表达所必需的EYA1蛋白表达和转录活性。这表明基于CRISPRa的基因治疗可以为大约70%的引起单倍体不足的EYA1变异体提供实质性的翻译潜力。我们的研究结果证明了CRISPR指导的基因组编辑纠正SV的潜力,包括那些与单倍体不足相关的EYA1CGR。
    Pathogenic structure variations (SVs) are associated with various types of cancer and rare genetic diseases. Recent studies have used Cas9 nuclease with paired guide RNAs (gRNAs) to generate targeted chromosomal rearrangements, focusing on producing fusion proteins that cause cancer, whereas research on precision genome editing for rectifying SVs is limited. In this study, we identified a novel complex genomic rearrangement (CGR), specifically an EYA1 inversion with a deletion, implicated in branchio-oto-renal/branchio-oto syndrome. To address this, two CRISPR-based approaches were tested. First, we used Cas9 nuclease and paired gRNAs tailored to the patient\'s genome. The dual CRISPR-Cas9 system induced efficient correction of paracentric inversion in patient-derived fibroblast, and effectively restored the expression of EYA1 mRNA and protein, along with its transcriptional activity required to regulate the target gene expression. Additionally, we used CRISPR activation (CRISPRa), which leads to the upregulation of EYA1 mRNA expression in patient-derived fibroblasts. Moreover, CRISPRa significantly improved EYA1 protein expression and transcriptional activity essential for target gene expression. This suggests that CRISPRa-based gene therapies could offer substantial translational potential for approximately 70% of disease-causing EYA1 variants responsible for haploinsufficiency. Our findings demonstrate the potential of CRISPR-guided genome editing for correcting SVs, including those with EYA1 CGR linked to haploinsufficiency.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    囊性纤维化跨膜传导调节因子(CFTR)基因编码在上皮细胞膜中发现的阴离子选择性通道。CFTR突变导致囊性纤维化(CF),一种遗传性疾病,损害多个器官的上皮功能。大多数患有CF的男性由于完整的生殖器导管丢失而不育。在这里,我们研究了一种新的附睾选择性顺式调节元件(CRE),位于CFTR基因启动子-9.5kb5'的开放染色质峰内。CRISPRa单独激活~9.5kb的CRE对CFTR基因表达没有影响。然而,与单独的启动子激活相比,附睾细胞中-9.5kbCRE和CFTR基因启动子的CRISPRa共激活显着增强了CFTRmRNA和蛋白质的表达。这种增加伴随着两个位点的染色质可及性增强。此外,联合CRISPRa策略激活了在-9.5kb位点缺乏开放染色质且基因座通常无活性的其他上皮细胞中的CFTR表达。然而,-9.5kbCRE在瞬时报告基因测定中不作为CFTR启动子的经典增强子发挥作用。这些数据提供了激活/增强CFTR表达的新机制,这可能对干扰CFTR转录的突变具有治疗作用。
    The cystic fibrosis transmembrane conductance regulator (CFTR) gene encodes an anion-selective channel found in epithelial cell membranes. Mutations in CFTR cause cystic fibrosis (CF), an inherited disorder that impairs epithelial function in multiple organs. Most men with CF are infertile due to loss of intact genital ducts. Here we investigated a novel epididymis-selective cis-regulatory element (CRE), located within a peak of open chromatin at -9.5 kb 5\' to the CFTR gene promoter. Activation of the -9.5 kb CRE alone by CRISPRa had no impact on CFTR gene expression. However, CRISPRa co-activation of the -9.5 kb CRE and the CFTR gene promoter in epididymis cells significantly augmented CFTR mRNA and protein expression when compared to promoter activation alone. This increase was accompanied by enhanced chromatin accessibility at both sites. Furthermore, the combined CRISPRa strategy activated CFTR expression in other epithelial cells that lack open chromatin at the -9.5 kb site and in which the locus is normally inactive. However, the -9.5 kb CRE does not function as a classical enhancer of the CFTR promoter in transient reporter gene assays. These data provide a novel mechanism for activating/augmenting CFTR expression, which may have therapeutic utility for mutations that perturb CFTR transcription.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    多药耐药(MDR)病原体的传播迅速超过了有效治疗的发展。不同的抗性机制进一步限制了我们最佳治疗方法的有效性,包括多药方案和最后一道防线抗菌药物。生物膜形成是微生物发病机制的有力组成部分,提供有效定殖和屏蔽抗微生物剂的支架,这进一步使耐药性研究复杂化。早期的基因敲除工具不允许研究必需基因,但是聚集的规则间隔回文重复推理(CRISPRi)技术已经通过遗传沉默克服了这一挑战。这些工具迅速发展以满足新的需求并利用本地CRISPR系统。现代工具的范围从创建大规模CRISPRi文库到用CRISPR激活(CRISPRa)可调调节基因表达。这篇综述讨论了基于CRISPRi/a的技术的快速扩展,它们在研究MDR和生物膜形成中的用途,以及这如何推动全面检查多药耐药性的有力工具的进一步发展。
    The spread of multi-drug-resistant (MDR) pathogens has rapidly outpaced the development of effective treatments. Diverse resistance mechanisms further limit the effectiveness of our best treatments, including multi-drug regimens and last line-of-defense antimicrobials. Biofilm formation is a powerful component of microbial pathogenesis, providing a scaffold for efficient colonization and shielding against anti-microbials, which further complicates drug resistance studies. Early genetic knockout tools didn\'t allow the study of essential genes, but clustered regularly interspaced palindromic repeat inference (CRISPRi) technologies have overcome this challenge via genetic silencing. These tools rapidly evolved to meet new demands and exploit native CRISPR systems. Modern tools range from the creation of massive CRISPRi libraries to tunable modulation of gene expression with CRISPR activation (CRISPRa). This review discusses the rapid expansion of CRISPRi/a-based technologies, their use in investigating MDR and biofilm formation, and how this drives further development of a potent tool to comprehensively examine multi-drug resistance.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    成簇的规则间隔的短回文重复序列(CRISPR)激活(CRISPRa)已成为分子生物学工具包的组成部分。CRISPRa基因筛选是鉴定上调足以引发给定表型的基因的令人兴奋的高通量手段。活化机械在不断发展中取得更大的成就,更健壮,和更一致的激活。在这次审查中,我们提供了可用的CRISPRa体系结构的简洁技术概述和汇集的CRISPRa屏幕的全面总结。此外,我们讨论了CRISPRa在广泛研究领域的当代应用,目的是展示令人兴奋的CRISPRa筛查新兴应用的观点。
    Clustered regularly interspaced short palindromic repeats (CRISPR) activation (CRISPRa) has become an integral part of the molecular biology toolkit. CRISPRa genetic screens are an exciting high-throughput means of identifying genes the upregulation of which is sufficient to elicit a given phenotype. Activation machinery is continually under development to achieve greater, more robust, and more consistent activation. In this review, we offer a succinct technological overview of available CRISPRa architectures and a comprehensive summary of pooled CRISPRa screens. Furthermore, we discuss contemporary applications of CRISPRa across broad fields of research, with the aim of presenting a view of exciting emerging applications for CRISPRa screening.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    CRISPR激活为实验生物学家通过直接观察基因表达靶向变化的表型变化将相关性转化为因果关系提供了宝贵的工具。除了少数例外,大多数疾病是由复杂的多基因相互作用引起的,多个基因有助于定义基因网络的输出。因此,研究人员对不仅可以提供控制而且可以同时上调多个基因的能力的工具越来越感兴趣。CRISPR/Cas12a的适应已经提供了特别适合于多个靶向基因的紧密协调过表达的系统。在这里,我们描述了一种测试dFnCas12a-VPR的主动靶向crRNA的方法,在继续生成和验证更长的crRNA阵列以多重靶向感兴趣的基因之前。
    CRISPR activation provides an invaluable tool for experimental biologists to convert correlations into causation by directly observing phenotypic changes upon targeted changes in gene expression. With few exceptions, most diseases are caused by complex polygenic interactions, with multiple genes contributing to define the output of a gene network. As such researchers are increasingly interested in tools that can offer not only control but also the capacity to simultaneously upregulate multiple genes. The adaptation of CRISPR/Cas12a has provided a system especially suited to the tightly coordinated overexpression of multiple targeted genes. Here we describe an approach to test for active targeting crRNAs for dFnCas12a-VPR, before proceeding to generate and validate longer crRNA arrays for multiplexed targeting of genes of interest.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

公众号