CRISPR-Cas systems

CRISPR - Cas 系统
  • 文章类型: Journal Article
    Dynein是主要的分子马达,负责各种货物的细胞内逆行运输,在毫秒内执行连续的纳米大小的步骤。由于已建立的分子追踪方法的时空精度有限,目前对动力蛋白步进的了解基本上仅限于体外减慢的测量。这里,我们使用MINFLUX荧光团定位在活的原代神经元中以纳米/毫秒精度直接追踪CRISPR/Cas9标记的内源性动力蛋白。我们表明,内源性动力蛋白主要采取8纳米的步骤,包括频繁的横向步骤,但很少向后步骤。引人注目的是,逆行和顺行运动之间的大多数方向反转发生在单步(16毫秒)的时间尺度上,提出了一种快速的监管逆转机制。在暂停或逆转期间,类似拔河的行为出乎意料地罕见。通过分析步骤之间的停留时间,我们得出的结论是,单一的限速过程是动力蛋白步进机制的基础,可能是由于在每个步骤中需要一次腺苷5'-三磷酸水解事件引起的。我们的研究强调了MINFLUX定位阐明活细胞中蛋白质功能的时空变化的能力。
    Dynein is the primary molecular motor responsible for retrograde intracellular transport of a variety of cargoes, performing successive nanometer-sized steps within milliseconds. Due to the limited spatiotemporal precision of established methods for molecular tracking, current knowledge of dynein stepping is essentially limited to slowed-down measurements in vitro. Here, we use MINFLUX fluorophore localization to directly track CRISPR/Cas9-tagged endogenous dynein with nanometer/millisecond precision in living primary neurons. We show that endogenous dynein primarily takes 8 nm steps, including frequent sideways steps but few backward steps. Strikingly, the majority of direction reversals between retrograde and anterograde movement occurred on the time scale of single steps (16 ms), suggesting a rapid regulatory reversal mechanism. Tug-of-war-like behavior during pauses or reversals was unexpectedly rare. By analyzing the dwell time between steps, we concluded that a single rate-limiting process underlies the dynein stepping mechanism, likely arising from just one adenosine 5\'-triphosphate hydrolysis event being required during each step. Our study underscores the power of MINFLUX localization to elucidate the spatiotemporal changes underlying protein function in living cells.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    非整倍体是人类癌症的标志,然而,应对非整倍性诱导的细胞应激的分子机制仍然未知。这里,我们在未转化的RPE1-hTERT细胞中诱导染色体错误分离,并获得多个具有不同程度非整倍性的稳定克隆。我们进行系统的基因组,6个等基因克隆的转录组和蛋白质组分析,使用全外显子组DNA,mRNA和miRNA测序,以及蛋白质组学。同时,我们在功能上询问他们的细胞漏洞,使用全基因组CRISPR/Cas9和大规模药物筛选。非整倍体克隆激活DNA损伤应答,并且对进一步的DNA损伤诱导更具抗性。非整倍体细胞还表现出升高的RAF/MEK/ERK途径活性,并且对靶向该途径的临床相关药物更敏感。特别是CRAF抑制。重要的是,CRAF和MEK抑制使非整倍体细胞对DNA损伤诱导化疗和PARP抑制剂敏感。我们在人类癌细胞系中验证了这些结果。此外,癌症患者对奥拉帕尼的耐药性与高水平的RAF/MEK/ERK信号有关,特别是在高度非整倍体肿瘤中。总的来说,我们的研究为各种非整倍性状态的遗传匹配核型稳定细胞提供了全面的资源,并揭示了非整倍体细胞的治疗相关的细胞依赖性。
    Aneuploidy is a hallmark of human cancer, yet the molecular mechanisms to cope with aneuploidy-induced cellular stresses remain largely unknown. Here, we induce chromosome mis-segregation in non-transformed RPE1-hTERT cells and derive multiple stable clones with various degrees of aneuploidy. We perform a systematic genomic, transcriptomic and proteomic profiling of 6 isogenic clones, using whole-exome DNA, mRNA and miRNA sequencing, as well as proteomics. Concomitantly, we functionally interrogate their cellular vulnerabilities, using genome-wide CRISPR/Cas9 and large-scale drug screens. Aneuploid clones activate the DNA damage response and are more resistant to further DNA damage induction. Aneuploid cells also exhibit elevated RAF/MEK/ERK pathway activity and are more sensitive to clinically-relevant drugs targeting this pathway, and in particular to CRAF inhibition. Importantly, CRAF and MEK inhibition sensitize aneuploid cells to DNA damage-inducing chemotherapies and to PARP inhibitors. We validate these results in human cancer cell lines. Moreover, resistance of cancer patients to olaparib is associated with high levels of RAF/MEK/ERK signaling, specifically in highly-aneuploid tumors. Overall, our study provides a comprehensive resource for genetically-matched karyotypically-stable cells of various aneuploidy states, and reveals a therapeutically-relevant cellular dependency of aneuploid cells.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    为了解决CRISPR-Cas9的局限性,包括脱靶效应和商业用途的高额许可费,Cas-CLOVER,由两个引导RNA激活的二聚体基因编辑工具,是最近开发的。这项研究的重点是通过靶向信号转导和转录激活因子1(STAT1)基因座,在用于重组腺相关病毒(rAAV)生产的HEK-293细胞中实施和评估Cas-CLOVER,这对于细胞生长调节至关重要,并可能影响rAAV的产量。Cas-CLOVER在基因编辑方面表现出令人印象深刻的效率,达到90%以上的淘汰赛(KO)成功率。对13个选定的HEK-293STAT1KO亚克隆进行广泛的分析表征,以评估其基因组稳定性。对于保持细胞的完整性和功能至关重要。此外,rAAV9生产力,Rep蛋白图谱,和效力,其中,被评估。克隆显示衣壳和载体基因组滴度的显着变化,衣壳滴度降低15%至98%,载体基因组滴度从16%至55%。有趣的是,Cas-CLOVER介导的STAT1KO大细胞群显示出更好的全衣壳与空衣壳比例。我们的研究还建立了一个全面的分析工作流程来检测和评估这种创新工具产生的基因KO,为未来精确基因编辑技术的研究提供了坚实的基础。
    In addressing the limitations of CRISPR-Cas9, including off-target effects and high licensing fees for commercial use, Cas-CLOVER, a dimeric gene editing tool activated by two guide RNAs, was recently developed. This study focused on implementing and evaluating Cas-CLOVER in HEK-293 cells used for recombinant adeno-associated virus (rAAV) production by targeting the signal transducer and activator of transcription 1 (STAT1) locus, which is crucial for cell growth regulation and might influence rAAV production yields. Cas-CLOVER demonstrated impressive efficiency in gene editing, achieving over 90% knockout (KO) success. Thirteen selected HEK-293 STAT1 KO sub-clones were subjected to extensive analytical characterization to assess their genomic stability, crucial for maintaining cell integrity and functionality. Additionally, rAAV9 productivity, Rep protein pattern profile, and potency, among others, were assessed. Clones showed significant variation in capsid and vector genome titers, with capsid titer reductions ranging from 15% to 98% and vector genome titers from 16% to 55%. Interestingly, the Cas-CLOVER-mediated STAT1 KO bulk cell population showed a better ratio of full to empty capsids. Our study also established a comprehensive analytical workflow to detect and evaluate the gene KOs generated by this innovative tool, providing a solid groundwork for future research in precise gene editing technologies.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    正常发育的中断和健康状况的出现通常是由于人体中重要基因的故障引起的。几十年的科学研究集中在用健康的替代品修饰或替代有缺陷的基因的技术上,标志着疾病治疗的新时代,预防和治疗。最近科学技术的进步重塑了我们对疾病的理解,药物开发和治疗建议,人类基因和细胞疗法处于这一转变的最前沿。其主要目的是为了治疗目的而修饰基因或调节细胞行为。在这次审查中,我们专注于基因和细胞疗法治疗人类遗传疾病的最新进展,特别强调FDA和EMA批准的疗法以及不断发展的基因组编辑景观。我们研究了创新基因编辑技术的现状,特别是CRISPR-Cas系统。当我们探索进步的时候,这些创新的伦理考虑和前景,我们深入了解它们彻底改变遗传疾病治疗的潜力,以及与他们的监管途径相关的挑战的讨论。这篇综述追溯了这些疗法的起源和演变,从概念思想到实际临床应用,标志着医学科学领域的重要里程碑。
    Disruptions in normal development and the emergence of health conditions often result from the malfunction of vital genes in the human body. Decades of scientific research have focused on techniques to modify or substitute defective genes with healthy alternatives, marking a new era in disease treatment, prevention and cure. Recent strides in science and technology have reshaped our understanding of disorders, medication development and treatment recommendations, with human gene and cell therapy at the forefront of this transformative shift. Its primary objective is the modification of genes or adjustment of cell behaviour for therapeutic purposes. In this review, we focus on the latest advances in gene and cell therapy for treating human genetic diseases, with a particular emphasis on FDA and EMA-approved therapies and the evolving landscape of genome editing. We examine the current state of innovative gene editing technologies, particularly the CRISPR-Cas systems. As we explore the progress, ethical considerations and prospects of these innovations, we gain insight into their potential to revolutionize the treatment of genetic diseases, along with a discussion of the challenges associated with their regulatory pathways. This review traces the origins and evolution of these therapies, from conceptual ideas to practical clinical applications, marking a significant milestone in the field of medical science.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    大肠杆菌O157:H7是大肠杆菌的致病性血清型。食用受大肠杆菌O157:H7污染的食物可能会导致一系列疾病。因此,建立快速、准确的食品中大肠杆菌O157:H7的检测方法具有重要意义。在这项研究中,基于LAMP并结合CRISPR/Cas12a系统,建立了一种灵敏、特异的大肠杆菌O157:H7快速检测方法,并构建了一锅法检测方法。在纯培养条件下,该方法的灵敏度稳定达到9.2×10°CFU/mL,整个反应可以在1小时内完成。在牛奶中,初始污染为7.4×10°CFU/mL的大肠杆菌O157:H7只需要培养3小时即可检测。测试结果可以通过荧光曲线或在紫外灯下目视观察来判断,消除仪器限制和一锅检测可以有效防止误报问题。一句话,LAMP-CRISPR/cas12a系统是检测大肠杆菌O157:H7的高灵敏度和方便的方法。
    Escherichia coli O157:H7 is a pathogenic serotype of Escherichia coli. Consumption of food contaminated with E. coli O157:H7 could cause a range of diseases. Therefore, it is of great importance to establish rapid and accurate detection methods for E. coli O157:H7 in food. In this study, based on LAMP and combined with the CRISPR/cas12a system, a sensitive and specific rapid detection method for E. coli O157:H7 was established, and One-Pot detection method was also constructed. The sensitivity of this method could stably reach 9.2 × 10° CFU/mL in pure culture, and the whole reaction can be completed within 1 h. In milk, E. coli O157:H7 with an initial contamination of 7.4 × 10° CFU/mL only needed to be cultured for 3 h to be detected. The test results can be judged by the fluorescence curve or by visual observation under a UV lamp, eliminating instrument limitations and One-Pot detection can effectively prevent the problem of false positives. In a word, the LAMP-CRISPR/cas12a system is a highly sensitive and convenient method for detecting E. coli O157:H7.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    虽然过继细胞疗法在血液恶性肿瘤中显示出成功的效果,免疫抑制性肿瘤微环境(TME)阻碍了其对抗实体瘤的潜力。近年来,缺氧诱导因子(HIF)家族的成员已被公认为T细胞代谢和功能的重要调节因子。在过继性细胞转移的背景下,HIF信号在活化的CD8T细胞功能中的作用,然而,还没有被深入地探索。在这里,我们利用CRISPR-Cas9技术来删除含脯氨酸羟化酶结构域的酶(PHD)2和3,从而稳定HIF-1信号,在已经经历分化和活化的CD8T细胞中,在临床环境中使用的T细胞表型建模。我们观察到PHD2/3缺失后T细胞活化和效应子功能显着增强,它依赖于HIF-1α,并伴随着糖酵解通量的增加。CD8T细胞性能的这种改善转化为小鼠对过继性T细胞治疗的肿瘤反应的增强,在各种肿瘤模型中,甚至包括那些据报道对免疫治疗干预措施极其耐药的人。这些发现有望推进基于CD8T细胞的疗法,并克服具有挑战性的肿瘤微环境中的免疫抑制障碍。
    While adoptive cell therapy has shown success in hematological malignancies, its potential against solid tumors is hindered by an immunosuppressive tumor microenvironment (TME). In recent years, members of the hypoxia-inducible factor (HIF) family have gained recognition as important regulators of T-cell metabolism and function. The role of HIF signalling in activated CD8 T cell function in the context of adoptive cell transfer, however, has not been explored in full depth. Here we utilize CRISPR-Cas9 technology to delete prolyl hydroxylase domain-containing enzymes (PHD) 2 and 3, thereby stabilizing HIF-1 signalling, in CD8 T cells that have already undergone differentiation and activation, modelling the T cell phenotype utilized in clinical settings. We observe a significant boost in T-cell activation and effector functions following PHD2/3 deletion, which is dependent on HIF-1α, and is accompanied by an increased glycolytic flux. This improvement in CD8 T cell performance translates into an enhancement in tumor response to adoptive T cell therapy in mice, across various tumor models, even including those reported to be extremely resistant to immunotherapeutic interventions. These findings hold promise for advancing CD8 T-cell based therapies and overcoming the immune suppression barriers within challenging tumor microenvironments.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    部署抗CRISPR蛋白是噬菌体用来抑制细菌CRISPR-Cas防御的有效策略。在一篇新的《自然》论文中,Trost等人发现并表征了一种令人兴奋的抗CRISPR机制,其可能影响超出了这种微观军备竞赛。
    Deploying anti-CRISPR proteins is a potent strategy used by phages to inhibit bacterial CRISPR-Cas defense. In a new Nature paper, Trost et al.1 discover and characterize an exciting anti-CRISPR mechanism with possible implications beyond this microscopic arms race.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    原理:转录因子(TFs)的调节过程塑造心脏发育并影响成年心脏对压力的反应,导致心脏疾病。尽管意义重大,支持TF介导调节的精确机制仍然难以捉摸。这里,我们确定EBF1,作为TF,在人类心脏组织中高度表达。据报道,EBF1与人类心血管疾病有关,但是它的角色在心里并不清楚。在这项研究中,我们研究了EBF1在心脏系统中的功能。方法:利用RNA-seq对EBF1表达模式进行分析。CRISPR/Cas9用于敲除EBF1以研究其作用。分化为心脏谱系的人多能干细胞(hPSC)用于模拟心脏发育。通过使用诸如超声心动图的技术在具有Ebf1敲除的小鼠模型上评估心脏功能。进行RNA-seq以分析转录扰动。ChIP-seq用于阐明EBF1结合的基因和潜在的调节机制。结果:EBF1在部分人和小鼠心肌细胞中均有表达。EBF1基因敲除抑制心脏发育。ChIP-seq表明EBF1对心脏发育至关重要的心源性TFs启动子的结合,促进其转录表达和促进心脏发育。在老鼠身上,Ebf1耗竭触发了基因的转录扰动,导致心脏重塑。机械上,我们发现EBF1直接与心脏肥大诱导基因的上游染色质区域结合,导致心脏肥大.结论:我们揭示了EBF1介导的调节过程的潜在机制,照亮心脏发育,和心脏重塑的发病机制。这些发现强调了EBF1在协调心脏过程的各个方面的关键作用,并为心肌病提供了有希望的治疗干预。
    Rationale: Regulatory processes of transcription factors (TFs) shape heart development and influence the adult heart\'s response to stress, contributing to cardiac disorders. Despite their significance, the precise mechanisms underpinning TF-mediated regulation remain elusive. Here, we identify that EBF1, as a TF, is highly expressed in human heart tissues. EBF1 is reported to be associated with human cardiovascular disease, but its roles are unclear in heart. In this study, we investigated EBF1 function in cardiac system. Methods: RNA-seq was utilized to profile EBF1 expression patterns. CRISPR/Cas9 was utilized to knock out EBF1 to investigate its effects. Human pluripotent stem cells (hPSCs) differentiated into cardiac lineages were used to mimic cardiac development. Cardiac function was evaluated on mouse model with Ebf1 knockout by using techniques such as echocardiography. RNA-seq was conducted to analyze transcriptional perturbations. ChIP-seq was employed to elucidate EBF1-bound genes and the underlying regulatory mechanisms. Results: EBF1 was expressed in some human and mouse cardiomyocyte. Knockout of EBF1 inhibited cardiac development. ChIP-seq indicated EBF1\'s binding on promoters of cardiogenic TFs pivotal to cardiac development, facilitating their transcriptional expression and promoting cardiac development. In mouse, Ebf1 depletion triggered transcriptional perturbations of genes, resulting in cardiac remodeling. Mechanistically, we found that EBF1 directly bound to upstream chromatin regions of cardiac hypertrophy-inducing genes, contributing to cardiac hypertrophy. Conclusions: We uncover the mechanisms underlying EBF1-mediated regulatory processes, shedding light on cardiac development, and the pathogenesis of cardiac remodeling. These findings emphasize EBF1\'s critical role in orchestrating diverse aspects of cardiac processes and provide a promising therapeutic intervention for cardiomyopathy.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    由于目前的递送系统,在大脑中使用基于蛋白质的CRISPR系统的基因治疗具有实际局限性。尤其是在动脉闭塞的情况下。克服这些障碍,提高稳定性,我们设计了一种用于鼻内基因治疗的系统,用于治疗缺血性卒中。方法:在缺血性中风小鼠模型中,将含有靶向Sirt1的基于蛋白质的CRISPR/dCas9系统的纳米颗粒鼻内递送至大脑。CRISPR/dCas9系统用磷酸钙(CaP)纳米颗粒封装以防止它们降解。然后将它们与β-羟基丁酸酯(bHb)缀合,以靶向鼻上皮细胞中的单羧酸转运蛋白1(MCT1),以促进其转移到大脑中。结果:体外培养的人鼻上皮细胞能高效地吸收和转移纳米颗粒至人脑内皮细胞。dCas9/CaP/PEI-PEG-bHb纳米颗粒在小鼠中的鼻内给药有效上调靶基因,Sirt1,在大脑中,永久性大脑中动脉闭塞后,脑水肿减少,生存率增加。此外,我们没有观察到显著的体内毒性与纳米颗粒的鼻内给药,强调这种方法的安全性。结论:这项研究表明,提出的基于蛋白质的CRISPR-dCas9系统通常靶向神经保护基因,特别是SIRT1,可能是急性缺血性卒中的潜在新疗法。
    Gene therapy using a protein-based CRISPR system in the brain has practical limitations due to current delivery systems, especially in the presence of arterial occlusion. To overcome these obstacles and improve stability, we designed a system for intranasal administration of gene therapy for the treatment of ischemic stroke. Methods: Nanoparticles containing the protein-based CRISPR/dCas9 system targeting Sirt1 were delivered intranasally to the brain in a mouse model of ischemic stroke. The CRISPR/dCas9 system was encapsulated with calcium phosphate (CaP) nanoparticles to prevent them from being degraded. They were then conjugated with β-hydroxybutyrates (bHb) to target monocarboxylic acid transporter 1 (MCT1) in nasal epithelial cells to facilitate their transfer into the brain. Results: Human nasal epithelial cells were shown to uptake and transfer nanoparticles to human brain endothelial cells with high efficiency in vitro. The intranasal administration of the dCas9/CaP/PEI-PEG-bHb nanoparticles in mice effectively upregulated the target gene, Sirt1, in the brain, decreased cerebral edema and increased survival after permanent middle cerebral artery occlusion. Additionally, we observed no significant in vivo toxicity associated with intranasal administration of the nanoparticles, highlighting the safety of this approach. Conclusion: This study demonstrates that the proposed protein-based CRISPR-dCas9 system targeting neuroprotective genes in general, and SIRT1 in particular, can be a potential novel therapy for acute ischemic stroke.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    结论:CRISPR-Combo系统(Cas9-Combo和CBE-Combo)设计用于全面的遗传操作,在番茄稳定系中实现基于Cas9的靶向诱变或胞嘧啶碱基编辑,同时进行基因激活。
    CONCLUSIONS: The CRISPR-Combo systems (Cas9-Combo and CBE-Combo) are designed for comprehensive genetic manipulation, enabling Cas9-based targeted mutagenesis or cytosine base editing with simultaneous gene activation in tomato stable lines.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

公众号