CRISPR-Cas Systems

CRISPR - Cas 系统
  • 文章类型: Journal Article
    Chimeric antigen receptor (CAR) T-cell therapy has proven a breakthrough in cancer treatment in the last decade, giving unprecedented results against hematological malignancies. All approved CAR T-cell products, as well as many being assessed in clinical trials, are generated using viral vectors to deploy the exogenous genetic material into T-cells. Viral vectors have a long-standing clinical history in gene delivery, and thus underwent iterations of optimization to improve their efficiency and safety. Nonetheless, their capacity to integrate semi-randomly into the host genome makes them potentially oncogenic via insertional mutagenesis and dysregulation of key cellular genes. Secondary cancers following CAR T-cell administration appear to be a rare adverse event. However several cases documented in the last few years put the spotlight on this issue, which might have been underestimated so far, given the relatively recent deployment of CAR T-cell therapies. Furthermore, the initial successes obtained in hematological malignancies have not yet been replicated in solid tumors. It is now clear that further enhancements are needed to allow CAR T-cells to increase long-term persistence, overcome exhaustion and cope with the immunosuppressive tumor microenvironment. To this aim, a variety of genomic engineering strategies are under evaluation, most relying on CRISPR/Cas9 or other gene editing technologies. These approaches are liable to introduce unintended, irreversible genomic alterations in the product cells. In the first part of this review, we will discuss the viral and non-viral approaches used for the generation of CAR T-cells, whereas in the second part we will focus on gene editing and non-gene editing T-cell engineering, with particular regard to advantages, limitations, and safety. Finally, we will critically analyze the different gene deployment and genomic engineering combinations, delineating strategies with a superior safety profile for the production of next-generation CAR T-cell.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    OBJECTIVE: We explored whether the Clustered regularly interspaced short palindromic repeat (CRISPR)-Cas and restriction-modification (R-M) systems are compatible and act together to resist plasmid attacks.
    METHODS: 932 global whole-genome sequences from GenBank, and 459 K. pneumoniae isolates from six provinces of China, were collected to investigate the co-distribution of CRISPR-Cas, R-M systems, and blaKPC plasmid. Conjugation and transformation assays were applied to explore the anti-plasmid function of CRISPR and R-M systems.
    RESULTS: We found a significant inverse correlation between the presence of CRISPR and R-M systems and blaKPC plasmids in K. pneumoniae, especially when both systems cohabited in one host. The multiple matched recognition sequences of both systems in blaKPC-IncF plasmids (97%) revealed that they were good targets for both systems. Furthermore, the results of conjugation assay demonstrated that CRISPR-Cas and R-M systems in K. pneumoniae could effectively hinder blaKPC plasmid invasion. Notably, CRISPR-Cas and R-M worked together to confer a 4-log reduction in the acquisition of blaKPC plasmid in conjugative events, exhibiting robust synergistic anti-plasmid immunity.
    CONCLUSIONS: Our results indicate the synergistic role of CRISPR and R-M in regulating horizontal gene transfer in K. pneumoniae and rationalize the development of antimicrobial strategies that capitalize on the immunocompromised status of KPC-KP.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    During early embryonic development, the transition from totipotency to pluripotency is a fundamental and critical process for proper development. However, the regulatory mechanisms governing this transition remain elusive. Here, we conducted a comprehensive genome-wide CRISPR/Cas9 screen to investigate the 2-cell-like cells (2CLCs) phenotype in mouse embryonic stem cells (mESCs). This effort led to the identification of ten regulators that play a pivotal role in determining cell fate during this transition. Notably, our study revealed Mdm2 as a significant negative regulator of 2CLCs, as perturbation of Mdm2 resulted in a higher proportion of 2CLCs. Mdm2 appears to influence cell fate through its impact on cell cycle progression and H3K27me3 epigenetic modifications. In summary, the results of our CRISPR/Cas9 screen have uncovered several genes with distinct functions in regulating totipotency and pluripotency at various levels, offering a valuable resource for potential targets in future molecular studies.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    The RNA-guided DNA endonuclease Cas9 cleaves double-stranded DNA targets complementary to an RNA guide, and is widely used as a powerful genome-editing tool. Here, we report the crystal structure of Brevibacillus laterosporus Cas9 (BlCas9, also known as BlatCas9), in complex with a guide RNA and its target DNA at 2.4-Å resolution. The structure reveals that the BlCas9 guide RNA adopts an unexpected architecture containing a triple-helix, which is specifically recognized by BlCas9, and that BlCas9 recognizes a unique N4CNDN protospacer adjacent motif through base-specific interactions on both the target and non-target DNA strands. Based on the structure, we rationally engineered a BlCas9 variant that exhibits enhanced genome- and base-editing activities with an expanded target scope in human cells. This approach may further improve the performance of the enhanced BlCas9 variant to generate useful genome-editing tools that require only a single C PAM nucleotide and can be packaged into a single AAV vector for in vivo gene therapy.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    小鼠模型中的功能分析对于建立一组遗传变异参与肿瘤发展是必要的。促进和经济有效地分析多个基因在致癌作用中的作用的建模平台将是有价值的。这里,我们提出了一种通过阳离子聚合物递送的CRISPR/Cas9核糖核蛋白进行肺诱变的创新策略.这种方法允许多个基因的同时失活。我们通过靶向一组肿瘤抑制基因来验证这个系统的有效性,特别是Rb1,Rbl1,Pten,选择Trp53是因为它们有可能导致肺部肿瘤,即小细胞肺癌(SCLC)。气管内施用CRISPR/聚合物纳米颗粒后出现具有人类SCLC组织学和转录组学特征的肿瘤。这些肿瘤在靶向位置的所有四个肿瘤抑制基因中携带功能丧失突变。这些发现在两种不同的纯遗传背景中再现。我们为肺肿瘤发生的简化建模提供了原理证明,以促进潜在癌症相关基因的功能测试。
    Functional analysis in mouse models is necessary to establish the involvement of a set of genetic variations in tumor development. A modeling platform to facilitate and cost-effectively analyze the role of multiple genes in carcinogenesis would be valuable. Here, we present an innovative strategy for lung mutagenesis using CRISPR/Cas9 ribonucleoproteins delivered via cationic polymers. This approach allows the simultaneous inactivation of multiple genes. We validate the effectiveness of this system by targeting a group of tumor suppressor genes, specifically Rb1, Rbl1, Pten, and Trp53, which were chosen for their potential to cause lung tumors, namely small cell lung carcinoma (SCLC). Tumors with histologic and transcriptomic features of human SCLC emerged after intratracheal administration of CRISPR/polymer nanoparticles. These tumors carried loss-of-function mutations in all four tumor suppressor genes at the targeted positions. These findings were reproduced in two different pure genetic backgrounds. We provide a proof of principle for simplified modeling of lung tumorigenesis to facilitate functional testing of potential cancer-related genes.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    背景:昼夜和夜间哺乳动物已经进化出不同的途径来优化其特定于时间型的生活方式的生存。传统的啮齿动物模型,夜间活动,可能不足以概括人类在健康和疾病方面的昼夜生物学。尽管昼夜啮齿动物可能有利于转化研究,直到最近,他们没有基因处理。本研究旨在通过在建立良好的昼夜啮齿动物模型中开发基因组编辑所需的实验程序来解决这一主要限制。尼罗河草鼠(Arvicanthisniloticus)。
    结果:建立了超排卵方案,每只雌性草鼠产卵近30个。受精卵在改良的大鼠1细胞胚胎培养基(mR1ECM)中培养,其中草鼠胚胎从1细胞阶段发育成胚泡。然后将基于CRISPR的方法用于体内和体外的基因编辑,靶向维甲酸诱导的1(Rai1),Smith-Magenis综合征的致病基因,神经发育障碍.使用经由输卵管核酸递送(i-GONAD)方法的改进的基因组编辑,通过电穿孔在体内递送CRISPR试剂。体内方法产生了几只编辑过的具有Rai1无效突变的创始人草大鼠,这表明目标等位基因稳定地传递给下一代。CRISPR试剂也在体外显微注射到2细胞胚胎中。在70%的胚胎中证实了Rai1基因的大缺失,展示高效的体外基因组编辑。
    结论:我们已经建立了一套方法,能够在尼罗河草大鼠中首次成功进行基于CRISPR的基因组编辑。开发的方法将指导未来对这种和其他昼夜啮齿动物物种的基因组编辑,这将促进这些模型在基础和转化研究中的更大效用。
    BACKGROUND: Diurnal and nocturnal mammals have evolved distinct pathways to optimize survival for their chronotype-specific lifestyles. Conventional rodent models, being nocturnal, may not sufficiently recapitulate the biology of diurnal humans in health and disease. Although diurnal rodents are potentially advantageous for translational research, until recently, they have not been genetically tractable. The present study aims to address this major limitation by developing experimental procedures necessary for genome editing in a well-established diurnal rodent model, the Nile grass rat (Arvicanthis niloticus).
    RESULTS: A superovulation protocol was established, which yielded nearly 30 eggs per female grass rat. Fertilized eggs were cultured in a modified rat 1-cell embryo culture medium (mR1ECM), in which grass rat embryos developed from the 1-cell stage into blastocysts. A CRISPR-based approach was then used for gene editing in vivo and in vitro, targeting Retinoic acid-induced 1 (Rai1), the causal gene for Smith-Magenis Syndrome, a neurodevelopmental disorder. The CRISPR reagents were delivered in vivo by electroporation using an improved Genome-editing via Oviductal Nucleic Acids Delivery (i-GONAD) method. The in vivo approach produced several edited founder grass rats with Rai1 null mutations, which showed stable transmission of the targeted allele to the next generation. CRISPR reagents were also microinjected into 2-cell embryos in vitro. Large deletion of the Rai1 gene was confirmed in 70% of the embryos injected, demonstrating high-efficiency genome editing in vitro.
    CONCLUSIONS: We have established a set of methods that enabled the first successful CRISPR-based genome editing in Nile grass rats. The methods developed will guide future genome editing of this and other diurnal rodent species, which will promote greater utility of these models in basic and translational research.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    非常规酵母马氏克鲁维酵母具有工业生产潜力,但是缺乏用于精确工程的先进合成生物学工具阻碍了其快速发展。这里,我们介绍了一种CRISPR-Cas9介导的多位点整合方法,用于组装多个外源基因。使用SlugCas9-HF,一种高保真Cas9核酸酶,我们提高了基因编辑的精确度。鉴定易于有效整合和表达异源基因的特定基因组基因座,并将其与一组配对的CRISPR-Cas9表达质粒和供体质粒组合以建立基于CRISPR的生物合成工具包。该工具包可实现超过12kb的大型基因模块的基因组整合,并以20%的效率在单个步骤中同时实现四重基因座整合。作为一个概念证明,我们应用该工具包来筛选促进血红素产生的基因组合,揭示HEM4Km和HEM12Sc的重要性。这个基于CRISPR的工具包简化了K.marxianus复杂途径的重建,扩大其在合成生物学中的应用。
    The nonconventional yeast Kluyveromyces marxianus has potential for industrial production, but the lack of advanced synthetic biology tools for precise engineering hinders its rapid development. Here, we introduce a CRISPR-Cas9-mediated multilocus integration method for assembling multiple exogenous genes. Using SlugCas9-HF, a high-fidelity Cas9 nuclease, we enhance gene editing precision. Specific genomic loci predisposed to efficient integration and expression of heterologous genes are identified and combined with a set of paired CRISPR-Cas9 expression plasmids and donor plasmids to establish a CRISPR-based biosynthesis toolkit. This toolkit enables genome integration of large gene modules over 12 kb and achieves simultaneous quadruple-locus integration in a single step with 20% efficiency. As a proof-of-concept, we apply the toolkit to screen for gene combinations that promote heme production, revealing the importance of HEM4Km and HEM12Sc. This CRISPR-based toolkit simplifies the reconstruction of complex pathways in K. marxianus, broadening its application in synthetic biology.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Letter
    暂无摘要。
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    CRISPR/Cas system, an adaptive immune system with clustered regularly interspaced short palindromic repeats, may interfere with exogenous nucleic acids and protect prokaryotes from external damages, is an effective gene editing and nucleic acid detection tools. The CRISPR/Cas system has been widely applied in virology and bacteriology; however, there is relatively less knowledge about the application of the CRISPR/Cas system in parasitic diseases. The review summarizes the mechanisms of action of the CRISPR/Cas system and provides a comprehensive overview of their application in gene editing and nucleic acid detection of parasitic diseases, so as to provide insights into future studies on parasitic diseases.
    [摘要] 成簇规律间隔短回文重复序列 (clustered regularly interspaced short palindromic repeats, CRISPR) 及其相关蛋白 (CRISPR-associated protein, Cas) 系统 (CRISPR/Cas系统) 为具有规律簇状短回文重复序列结构的适应性免疫系统, 能干 扰外源性核酸, 保护原核生物免受外部侵害, 是一种有效的基因编辑及核酸检测工具。CRISPR/Cas系统在病毒和细菌 领域应用广泛, 但在寄生虫病领域研究相对较少。本文分类探讨了CRISPR/Cas系统的作用机制, 全面综述了其在寄生 虫基因编辑与核酸检测中的应用, 旨在为未来寄生虫病相关研究提供参考。.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    背景:Viperin,也称为含S-腺苷-甲硫氨酸结构域的自由基蛋白2(RSAD2),是一种干扰素诱导蛋白,参与针对多种病毒的先天免疫反应。在哺乳动物中,Viperin通过将三磷酸胞苷(CTP)酶促转化为其抗病毒类似物ddhCTP以及通过与参与先天免疫信号传导和病毒在其生命周期中利用的代谢途径的宿主蛋白相互作用来发挥其抗病毒功能。然而,Viperin如何调节鱼类的抗病毒反应仍然是未知的。
    结果:为此,我们开发了一种黑头小鱼(Pimephalespromelas)克隆细胞系,其中独特的viperin基因已被CRISPR/Cas9基因组编辑敲除。为了破译鱼类Viperin对抗病毒反应的贡献及其在先天免疫反应范围之外的调节作用,我们对Viperin-/-和野生型细胞系进行了比较RNA-seq分析,这些细胞系在用重组头小牛I型干扰素刺激后.
    结论:我们的结果表明,Viperin对典型的I型IFN不产生正反馈,而是通过下调特定的促炎基因和上调NF-κB途径的阻遏因子而充当炎症反应的负调节因子。它似乎也在调节代谢过程中发挥作用,包括一种碳代谢,骨形成,细胞外基质组织和细胞粘附。
    BACKGROUND: Viperin, also known as radical S-adenosyl-methionine domain containing protein 2 (RSAD2), is an interferon-inducible protein that is involved in the innate immune response against a wide array of viruses. In mammals, Viperin exerts its antiviral function through enzymatic conversion of cytidine triphosphate (CTP) into its antiviral analog ddhCTP as well as through interactions with host proteins involved in innate immune signaling and in metabolic pathways exploited by viruses during their life cycle. However, how Viperin modulates the antiviral response in fish remains largely unknown.
    RESULTS: For this purpose, we developed a fathead minnow (Pimephales promelas) clonal cell line in which the unique viperin gene has been knocked out by CRISPR/Cas9 genome-editing. In order to decipher the contribution of fish Viperin to the antiviral response and its regulatory role beyond the scope of the innate immune response, we performed a comparative RNA-seq analysis of viperin-/- and wildtype cell lines upon stimulation with recombinant fathead minnow type I interferon.
    CONCLUSIONS: Our results revealed that Viperin does not exert positive feedback on the canonical type I IFN but acts as a negative regulator of the inflammatory response by downregulating specific pro-inflammatory genes and upregulating repressors of the NF-κB pathway. It also appeared to play a role in regulating metabolic processes, including one carbon metabolism, bone formation, extracellular matrix organization and cell adhesion.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

公众号