CRISPR–Cas

CRISPR - Cas
  • 文章类型: Journal Article
    基因治疗近年来取得了实质性进展,成为治疗各种人类疾病的建设性策略。这篇综述全面概述了这些发展,专注于它们在不同疾病环境中的不同应用。它探索了基因传递系统的进化,包括病毒(如腺相关病毒;AAV)和非病毒方法,并评估其固有的优势和局限性。此外,该综述深入研究了在靶向特定组织和细胞类型方面取得的进展,跨越眼睛,肝脏,肌肉,和中枢神经系统,其中,利用这些基因技术。这种有针对性的方法对于解决广泛的遗传疾病至关重要,如遗传性溶酶体贮积病,神经退行性疾病,和心血管疾病。最近的临床试验和基因治疗的成功结果,特别是那些涉及AAV和成簇的规则间隔短回文重复(CRISPR)-CRISPR相关蛋白,被突出显示,阐明这种方法在疾病治疗中的转化潜力。综述了基因治疗的现状,其前景,及其显著改善患者预后和生活质量的能力。通过提供全面的分析,这篇综述为研究人员提供了宝贵的见解,临床医生,和利益相关者,丰富了正在进行的关于疾病治疗轨迹的话语。
    Gene therapy has witnessed substantial advancements in recent years, becoming a constructive tactic for treating various human diseases. This review presents a comprehensive overview of these developments, with a focus on their diverse applications in different disease contexts. It explores the evolution of gene delivery systems, encompassing viral (like adeno-associated virus; AAV) and nonviral approaches, and evaluates their inherent strengths and limitations. Moreover, the review delves into the progress made in targeting specific tissues and cell types, spanning the eye, liver, muscles, and central nervous system, among others, using these gene technologies. This targeted approach is crucial in addressing a broad spectrum of genetic disorders, such as inherited lysosomal storage diseases, neurodegenerative disorders, and cardiovascular diseases. Recent clinical trials and successful outcomes in gene therapy, particularly those involving AAV and the clustered regularly interspaced short palindromic repeats (CRISPR)-CRISPR-associated proteins, are highlighted, illuminating the transformative potentials of this approach in disease treatment. The review summarizes the current status of gene therapy, its prospects, and its capacity to significantly ameliorate patient outcomes and quality of life. By offering comprehensive analysis, this review provides invaluable insights for researchers, clinicians, and stakeholders, enriching the ongoing discourse on the trajectory of disease treatment.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    CRISPR-Cas系统是大多数原核生物中存在的适应性免疫机制,在细菌和古细菌适应新环境中起重要作用。希瓦氏藻是一种分布于全球的海洋人畜共患病原体,这占了希瓦氏菌感染的大多数临床病例。然而,Shewanella藻类CRISPR-Cas系统的表征尚未得到很好的研究。通过全基因组序列分析,我们表征了S.藻类中的CRISPR-Cas系统。我们的结果表明,CRISPR-Cas系统在海藻中普遍存在,大多数菌株含有I-F型系统。这项研究为海藻中CRISPR-Cas系统的多样性和功能提供了新的见解,并强调了它们在这些海洋病原体的适应和生存中的潜在作用。
    CRISPR-Cas systems are adaptive immune mechanisms present in most prokaryotes that play an important role in the adaptation of bacteria and archaea to new environments. Shewanella algae is a marine zoonotic pathogen with worldwide distribution, which accounts for the majority of clinical cases of Shewanella infections. However, the characterization of Shewanella algae CRISPR-Cas systems has not been well investigated yet. Through whole genome sequence analysis, we characterized the CRISPR-Cas systems in S. algae. Our results indicate that CRISPR-Cas systems are prevalent in S. algae, with the majority of strains containing the Type I-F system. This study provides new insights into the diversity and function of CRISPR-Cas systems in S. algae and highlights their potential role in the adaptation and survival of these marine pathogens.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    细菌和它们的噬菌体对手正在进行一场持续的军备竞赛,导致广泛的抗噬菌体武器库和相应的病毒对策的发展。近年来,CRISPR-Cas系统的识别和利用已经引起了人们对发现和表征抗噬菌体机制的新兴趣,揭示了比最初预期更丰富的多样性。目前,这些防御系统可以根据与感染周期相关的细菌策略进行分类。因此,细菌防御系统可以降解入侵的遗传物质,引发流产感染,或抑制基因组复制。了解与细菌免疫相关的过程的分子机制对于基于噬菌体的治疗和新的生物技术工具的开发具有重要意义。这篇综述旨在全面涵盖这些过程,专注于最近的发现。
    Bacteria and their phage adversaries are engaged in an ongoing arms race, resulting in the development of a broad antiphage arsenal and corresponding viral countermeasures. In recent years, the identification and utilization of CRISPR-Cas systems have driven a renewed interest in discovering and characterizing antiphage mechanisms, revealing a richer diversity than initially anticipated. Currently, these defense systems can be categorized based on the bacteria\'s strategy associated with the infection cycle stage. Thus, bacterial defense systems can degrade the invading genetic material, trigger an abortive infection, or inhibit genome replication. Understanding the molecular mechanisms of processes related to bacterial immunity has significant implications for phage-based therapies and the development of new biotechnological tools. This review aims to comprehensively cover these processes, with a focus on the most recent discoveries.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    成功的基因组编辑取决于可编程核酸酶(PNs)如CRISPR-Cas系统的切割效率。已经开发了各种方法来评估PN的效率,其中大多数估计由PN诱导的双链断裂引起的indel的发生。在这些方法中,通过PCR扩增PN基因组靶位点,随后使用Sanger测序分析所得的PCR产物,高通量测序,或错配检测试验。在这些方法中,使用在线网络工具对PCR产物进行Sanger测序,然后进行indel分析,由于其用户友好的性质,因此受到了欢迎。该方法通过计算分析测序跟踪数据来估计indel频率。然而,这些计算工具的准确性仍然不确定。在这项研究中,我们比较了四种网络工具的性能,潮汐,ICE,解码,和SeqScreener,使用具有预定indel的人工测序模板。我们的结果表明,当indel简单且仅包含少量基本变化时,这些工具能够以可接受的准确性估计indel频率。然而,当测序模板包含更复杂的插入缺失或敲入序列时,估计的值在工具之间变得更加可变.此外,尽管这些工具有效地估计了净索引大小,它们对indel序列进行反卷积的能力表现出一定局限性的变异性。这些发现强调了谨慎选择和使用适当工具的重要性,取决于正在进行的基因组编辑的类型。
    Successful genome editing depends on the cleavage efficiency of programmable nucleases (PNs) such as the CRISPR-Cas system. Various methods have been developed to assess the efficiency of PNs, most of which estimate the occurrence of indels caused by PN-induced double-strand breaks. In these methods, PN genomic target sites are amplified through PCR, and the resulting PCR products are subsequently analyzed using Sanger sequencing, high-throughput sequencing, or mismatch detection assays. Among these methods, Sanger sequencing of PCR products followed by indel analysis using online web tools has gained popularity due to its user-friendly nature. This approach estimates indel frequencies by computationally analyzing sequencing trace data. However, the accuracy of these computational tools remains uncertain. In this study, we compared the performance of four web tools, TIDE, ICE, DECODR, and SeqScreener, using artificial sequencing templates with predetermined indels. Our results demonstrated that these tools were able to estimate indel frequency with acceptable accuracy when the indels were simple and contained only a few base changes. However, the estimated values became more variable among the tools when the sequencing templates contained more complex indels or knock-in sequences. Moreover, although these tools effectively estimated the net indel sizes, their capability to deconvolute indel sequences exhibited variability with certain limitations. These findings underscore the importance of judiciously selecting and using an appropriate tool with caution, depending on the type of genome editing being performed.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    近年来,抗生素治疗遇到了重大的挑战,由于细菌之间的多药耐药性的迅速出现负责危及生命的疾病,对传染病的未来管理产生不确定性。与前COVID时代相比,后COVID时代的抗菌素耐药性升级引起了全球关注。医院相关感染的患病率,尤其是金黄色葡萄球菌耐药菌株的爆发,全世界都有报道,印度是此类事件的著名热点。各种毒力因子和突变表征涉及金黄色葡萄球菌的医院感染。缺乏适当的替代疗法导致耐药性增加,这强调了需要调查和检查最近的研究以对抗未来的大流行。在目前的基因组学时代,下一代测序(NGS)等先进技术的应用,机器学习(ML)和用于基因组分析和耐药性预测的量子计算(QC)显着提高了诊断耐药病原体和对遗传复杂性的认识的步伐。尽管诊断迅速,在缺乏有效的替代疗法的情况下,消除耐药感染仍然无法实现.研究人员正在探索各种替代治疗方法,包括噬菌体疗法,抗菌肽,光动力疗法,疫苗,宿主导向疗法,还有更多.拟议的综述主要集中在过去十年中金黄色葡萄球菌的抗性历程,详细说明其抗病机制,在次大陆的患病率,在快速诊断耐药菌株方面的创新,包括NGS和ML申请的申请人以及QC,它有助于设计针对金黄色葡萄球菌感染的替代新型治疗方法。
    In recent years, antibiotic therapy has encountered significant challenges due to the rapid emergence of multidrug resistance among bacteria responsible for life-threatening illnesses, creating uncertainty about the future management of infectious diseases. The escalation of antimicrobial resistance in the post-COVID era compared to the pre-COVID era has raised global concern. The prevalence of nosocomial-related infections, especially outbreaks of drug-resistant strains of Staphylococcus aureus, have been reported worldwide, with India being a notable hotspot for such occurrences. Various virulence factors and mutations characterize nosocomial infections involving S. aureus. The lack of proper alternative treatments leading to increased drug resistance emphasizes the need to investigate and examine recent research to combat future pandemics. In the current genomics era, the application of advanced technologies such as next-generation sequencing (NGS), machine learning (ML), and quantum computing (QC) for genomic analysis and resistance prediction has significantly increased the pace of diagnosing drug-resistant pathogens and insights into genetic intricacies. Despite prompt diagnosis, the elimination of drug-resistant infections remains unattainable in the absence of effective alternative therapies. Researchers are exploring various alternative therapeutic approaches, including phage therapy, antimicrobial peptides, photodynamic therapy, vaccines, host-directed therapies, and more. The proposed review mainly focuses on the resistance journey of S. aureus over the past decade, detailing its resistance mechanisms, prevalence in the subcontinent, innovations in rapid diagnosis of the drug-resistant strains, including the applicants of NGS and ML application along with QC, it helps to design alternative novel therapeutics approaches against S. aureus infection.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    基因编辑技术的精确性对于创建治疗人类疾病的安全有效疗法至关重要。虽然CRISPR-Cas系统的可编程性允许新的基因编辑技术的快速创新,这些酶的脱靶活性阻碍了新疗法的临床开发。在这里,我们报告了一种来自不动杆菌的新型CRISPR-Cas12a酶(AiCas12a)的鉴定和表征。我们设计了核酸酶(称为AiEvo2)以提高特异性,PAM识别,和对多种人类临床目标的功效。AiEvo2是高度精确的,能够通过利用疾病相关等位基因上的单核苷酸多态性,有效区分亨廷顿患者来源细胞中的正常和致病等位基因。AiEvo2有效地编辑几个肝脏相关的靶基因,包括PCSK9和TTR,当传递到原代肝细胞作为mRNA封装在脂质纳米颗粒。该酶还利用多重同时编辑和CAR插入,从原代人类T细胞中设计出一种有效的CD19CAR-T疗法。为了进一步确保精确编辑,我们设计了一种抗CRISPR蛋白(ErAcr),以选择性抑制脱靶基因编辑,同时保留治疗性靶向编辑.工程化的AiEvo2核酸酶与新型ErAcr蛋白偶联代表了一种控制编辑保真度并提高基因编辑疗法安全性和有效性的新方法。
    The precision of gene editing technology is critical to creating safe and effective therapies for treating human disease. While the programmability of CRISPR-Cas systems has allowed for rapid innovation of new gene editing techniques, the off-target activity of these enzymes has hampered clinical development for novel therapeutics. Here, we report the identification and characterization of a novel CRISPR-Cas12a enzyme from Acinetobacter indicus (AiCas12a). We engineer the nuclease (termed AiEvo2) for increased specificity, protospacer adjacent motif recognition, and efficacy on a variety of human clinical targets. AiEvo2 is highly precise and able to efficiently discriminate between normal and disease-causing alleles in Huntington\'s patient-derived cells by taking advantage of a single nucleotide polymorphism on the disease-associated allele. AiEvo2 efficiently edits several liver-associated target genes including PCSK9 and TTR when delivered to primary hepatocytes as mRNA encapsulated in a lipid nanoparticle. The enzyme also engineers an effective CD19 chimeric antigen receptor-T-cell therapy from primary human T cells using multiplexed simultaneous editing and chimeric antigen receptor insertion. To further ensure precise editing, we engineered an anti-CRISPR protein to selectively inhibit off-target gene editing while retaining therapeutic on-target editing. The engineered AiEvo2 nuclease coupled with a novel engineered anti-CRISPR protein represents a new way to control the fidelity of editing and improve the safety and efficacy of gene editing therapies.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    巨细胞病毒(CMV)感染是肝移植受者中非常普遍的机会性感染。当肝脏供体感染CMV时,存在传递给接收者的风险,导致CMV感染。提高肝移植术后疗效,将CMV检测的重点转移到供体并实现早期诊断至关重要,以及实施有效的预防和治疗措施。然而,过去常用的CMV检测方法存在局限性,无法在肝移植供者中进行早期和准确的诊断.这篇综述的重点是CMV检测方法的最新进展,这些方法可能适用于肝移植供体。目的是比较和评估它们的临床效用,从而为临床上CMV感染的快速、准确诊断提供指导和支持。基于成簇的规则间隔短回文重复序列相关蛋白(CRISPR-Cas)系统的检测方法成为检测病毒的一种有前途的方法,为临床上早期和便捷的CMV感染诊断提供了巨大的前景。
    Cytomegalovirus (CMV) infection is a highly prevalent opportunistic infection among liver transplant recipients. When the liver donor is infected with CMV, there is a risk of transmission to the recipient, leading to CMV infection. To improve the postoperative outcome of liver transplantation, it is crucial to shift the focus of CMV detection to the donor and achieve early diagnosis, as well as implement effective preventative and therapeutic measures. However, the commonly used CMV detection methods in the past had limitations that prevented their early and accurate diagnosis in liver transplant donors. This review focuses on the latest advancements in CMV detection methods that can potentially be applied to liver transplant donors. The objective is to compare and evaluate their clinical utility, thereby providing guidance and support for rapid and accurate diagnosis of CMV infection in the clinic. The clustered regularly interspaced short palindromic repeats-associated proteins (CRISPR-Cas) system-based assay emerges as a promising method for detecting the virus, offering great prospects for early and expedient CMV infection diagnosis in clinical settings.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    CRISPR-Cas系统的多样性引发了一场生物技术革命,测量质量,和熟练程度。识别核酸生物标志物,使用CRISPR进行诊断的方法之一,是一种非常敏感的诊断方法。广泛的传染性和非传染性疾病,突变,和CRISPR缺失相关的遗传性疾病已被检测到使用诊断。此外,这项技术用于测试蛋白质和微分子。我们专注于如何使用Cas蛋白来检测基因中的疾病,农业,和癌症治疗。此外,CRISPR技术对生物体的健康有许多负面影响,尽管它对生物医学科学做出了许多贡献,但环境和人口结构。因此,出于这些原因,研究基因组编辑对非目标物种的影响非常重要。在本综述结束时简要讨论了未来的CRISPR。
    A biotechnological revolution is triggered by CRISPR-Cas systems\' variety, measured quality, and proficiency. Identifying nucleic acid biomarkers, one of the methods that use CRISPR for diagnosis, is an extremely sensitive diagnostic method.A broad range of infectious and noninfecting diseases, mutations, and CRISPR deletions associated with genetic disorders have been detected using diagnostics. Furthermore, this technology is used to test proteins and micromolecules. We focus on how Cas proteins can be used to detect diseases in genes, agriculture, and cancer therapy. Furthermore, CRISPR technology has many negative impacts on the health of living organisms, environmental and population structures in spite of its numerous contributions to biomedical science. Therefore, an investigation into the impact of genome editing on nontargeted species is important for these reasons. CRISPR in the future is briefly discussed towards the end of this review.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    ErCas12a是一种2类V型CRISPR-Cas核酸酶,分离自Eubacteriumrectale,具有有吸引力的基本特征,例如RNA自加工能力,并且缺乏Cas核酸酶典型的可达特许权使用费。本研究旨在开发一种适用于酿酒酵母模型的ErCas12a介导的基因组编辑工具。酿酒酵母中ErCas12a编辑的最佳设计参数定义为21nt间隔区,侧翼为19nt直接重复序列,从RNApolII或III启动子表达,在通常靶向的基因组位置实现接近100%的编辑效率。为了能够将ErCas12a基因组编辑工具转移到不同的菌株谱系,构建了一个可运输的平台质粒,并评估了其基因组编辑效率。使用相同的crRNA表达设计,可运输的ErCas12a基因组编辑工具在靶向ADE2基因时显示出更低的效率.与基因组Ercas12a表达相反,Ercas12a的游离表达降低了葡萄糖的最大比生长速率,表明ErCas12a在高表达水平下的毒性。此外,ErCas12a使用RNA自加工能力处理了多间隔区crRNA阵列,这允许同时编辑多个染色体位置。ErCas12a被确立为酿酒酵母的遗传工具箱的有价值的补充。
    ErCas12a is a class 2 type V CRISPR-Cas nuclease isolated from Eubacterium rectale with attractive fundamental characteristics, such as RNA self-processing capability, and lacks reach-through royalties typical for Cas nucleases. This study aims to develop a ErCas12a-mediated genome editing tool applicable in the model yeast Saccharomyces cerevisiae. The optimal design parameters for ErCas12a editing in S. cerevisiae were defined as a 21-nt spacer flanked by 19 nt direct repeats expressed from either RNApolII or III promoters, achieving near 100% editing efficiencies in commonly targeted genomic locations. To be able to transfer the ErCas12a genome editing tool to different strain lineages, a transportable platform plasmid was constructed and evaluated for its genome editing efficiency. Using an identical crRNA expression design, the transportable ErCas12a genome editing tool showed lower efficiency when targeting the ADE2 gene. In contrast to genomic Ercas12a expression, episomal expression of Ercas12a decreases maximum specific growth rate on glucose, indicating ErCas12a toxicity at high expression levels. Moreover, ErCas12a processed a multispacer crRNA array using the RNA self-processing capability, which allowed for simultaneous editing of multiple chromosomal locations. ErCas12a is established as a valuable addition to the genetic toolbox for S. cerevisiae.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    聚集规律间隔短回文重复(CRISPR)相关(CRISPR-Cas)蛋白质介导的基因编辑的关键第一步是通过蛋白质的PAM相互作用氨基酸(PIAA)识别靶DNA上优选的原型间隔区相邻基序(PAM)。因此,PAM识别的精确计算建模有助于帮助CRISPR-Cas工程放松或收紧随后应用的PAM要求。这里,我们描述了用于设计蛋白质-核酸相互作用的通用计算蛋白质设计框架(UniDesign)。作为概念的证明,我们应用UniDesign解码8个Cas9和2个Cas12a蛋白的PAM-PIAA相互作用。我们证明,给定本地PIAA,UniDesign预测的PAMs在很大程度上与所有Cas蛋白的天然PAMs相同。反过来,考虑到自然PAM,计算重新设计的PIAA残基在很大程度上概括了天然PIAA(在同一性和相似性方面分别为74%和86%,分别)。这些结果表明,UniDesign忠实地抓住了自然PAM和本地PIAA之间的相互偏好,这表明它是工程CRISPR-Cas和其他核酸相互作用蛋白的有用工具。UniDesign在https://github.com/tommyhuangthu/UniDesign上开源。
    The critical first step in Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)-associated (CRISPR-Cas) protein-mediated gene editing is recognizing a preferred protospacer adjacent motif (PAM) on target DNAs by the protein\'s PAM-interacting amino acids (PIAAs). Thus, accurate computational modeling of PAM recognition is useful in assisting CRISPR-Cas engineering to relax or tighten PAM requirements for subsequent applications. Here, we describe a universal computational protein design framework (UniDesign) for designing protein-nucleic acid interactions. As a proof of concept, we applied UniDesign to decode the PAM-PIAA interactions for eight Cas9 and two Cas12a proteins. We show that, given native PIAAs, the UniDesign-predicted PAMs are largely identical to the natural PAMs of all Cas proteins. In turn, given natural PAMs, the computationally redesigned PIAA residues largely recapitulated the native PIAAs (74% and 86% in terms of identity and similarity, respectively). These results demonstrate that UniDesign faithfully captures the mutual preference between natural PAMs and native PIAAs, suggesting it is a useful tool for engineering CRISPR-Cas and other nucleic acid-interacting proteins. UniDesign is open-sourced at https://github.com/tommyhuangthu/UniDesign.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

公众号