CP: Systems biology

CP : 系统生物学
  • 文章类型: Journal Article
    肿瘤的细胞成分及其微环境在肿瘤的进展中起着关键作用,患者生存,以及对癌症治疗的反应。通过单细胞RNA测序(scRNA-seq)数据在大量肿瘤中揭示全面的细胞特征至关重要,因为它揭示了固有的肿瘤细胞特征,这些特征无法通过传统的癌症亚型方法进行识别。我们的贡献,scBeacon,是一种工具,通过整合和聚类多个scRNA-seq数据集来提取用于在批量样本上对不相关的肿瘤数据集进行去卷积的签名,从而得出细胞类型签名。通过在癌症基因组图谱(TCGA)队列中使用scBeacon,我们发现特定肿瘤类别中的细胞和分子属性,许多与患者结果相关。我们开发了肿瘤细胞类型图,以基于细胞类型推断直观地描绘TCGA样品之间的关系。
    The cellular components of tumors and their microenvironment play pivotal roles in tumor progression, patient survival, and the response to cancer treatments. Unveiling a comprehensive cellular profile within bulk tumors via single-cell RNA sequencing (scRNA-seq) data is crucial, as it unveils intrinsic tumor cellular traits that elude identification through conventional cancer subtyping methods. Our contribution, scBeacon, is a tool that derives cell-type signatures by integrating and clustering multiple scRNA-seq datasets to extract signatures for deconvolving unrelated tumor datasets on bulk samples. Through the employment of scBeacon on the The Cancer Genome Atlas (TCGA) cohort, we find cellular and molecular attributes within specific tumor categories, many with patient outcome relevance. We developed a tumor cell-type map to visually depict the relationships among TCGA samples based on the cell-type inferences.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    未知原发癌(CUP)代表转移性癌症,尽管有标准的诊断程序,原发部位仍未被识别。为了确定这种情况下的肿瘤起源,我们开发了BPformer,一种深度学习方法,将变压器模型与生物路径的先验知识相结合。对来自32种癌症类型的10,410种原发性肿瘤的转录组进行了培训,BPformer取得了94%的显著准确率,92%,89%在原发肿瘤和转移性肿瘤的原发和转移部位,分别,超越现有方法。此外,BPformer在一项回顾性研究中得到了验证,与通过免疫组织化学和组织病理学诊断的肿瘤部位一致。此外,BPformer能够根据它们对肿瘤起源鉴定的贡献对通路进行排序,这有助于将致癌信号传导途径分类为在不同癌症中高度保守的那些,而不是根据其起源高度可变的那些。
    Cancer of unknown primary (CUP) represents metastatic cancer where the primary site remains unidentified despite standard diagnostic procedures. To determine the tumor origin in such cases, we developed BPformer, a deep learning method integrating the transformer model with prior knowledge of biological pathways. Trained on transcriptomes from 10,410 primary tumors across 32 cancer types, BPformer achieved remarkable accuracy rates of 94%, 92%, and 89% in primary tumors and primary and metastatic sites of metastatic tumors, respectively, surpassing existing methods. Additionally, BPformer was validated in a retrospective study, demonstrating consistency with tumor sites diagnosed through immunohistochemistry and histopathology. Furthermore, BPformer was able to rank pathways based on their contribution to tumor origin identification, which helped to classify oncogenic signaling pathways into those that are highly conservative among different cancers versus those that are highly variable depending on their origins.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    无浆细胞DNA(cfDNA)片段化模式是癌症液体活检中具有高度翻译意义的新兴方向。传统上,将cfDNA测序读数与参考基因组进行比对以提取它们的片段组特征。在这项研究中,通过在相同的数据集上并行使用不同的参考基因组的cfDNA片段组学分析,我们报告了这种传统的基于参考的方法存在系统偏差。cfDNA片段组特征的偏差在种族之间以样品依赖性方式变化,因此可能会对多个临床中心的癌症诊断测定的性能产生不利影响。此外,为了规避分析偏见,我们主要发展,cfDNA片段组学分析的无参考方法。Freefly的运行速度比传统的基于参考的方法快60倍,同时产生高度一致的结果。此外,Freefly报道的cfDNA片段组学特征可直接用于癌症诊断。因此,Freefly对cfDNA片段组学的快速无偏测量具有翻译价值。
    Plasma cell-free DNA (cfDNA) fragmentation patterns are emerging directions in cancer liquid biopsy with high translational significance. Conventionally, the cfDNA sequencing reads are aligned to a reference genome to extract their fragmentomic features. In this study, through cfDNA fragmentomics profiling using different reference genomes on the same datasets in parallel, we report systematic biases in such conventional reference-based approaches. The biases in cfDNA fragmentomic features vary among races in a sample-dependent manner and therefore might adversely affect the performances of cancer diagnosis assays across multiple clinical centers. In addition, to circumvent the analytical biases, we develop Freefly, a reference-free approach for cfDNA fragmentomics profiling. Freefly runs ∼60-fold faster than the conventional reference-based approach while generating highly consistent results. Moreover, cfDNA fragmentomic features reported by Freefly can be directly used for cancer diagnosis. Hence, Freefly possesses translational merit toward the rapid and unbiased measurement of cfDNA fragmentomics.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    单细胞RNA测序(scRNA-seq)改变了我们对细胞对扰动(如治疗干预和疫苗)的反应的理解。与这种扰动的基因相关性通常通过差异表达分析(DEA)来评估,它提供了转录组景观的一维视图。该方法潜在地忽略了具有适度表达变化但深刻下游影响的基因,并且易受假阳性的影响。我们介绍了GENIX(基因表达网络重要性检查),通过构建基因关联网络并采用基于网络的比较模型来识别拓扑特征基因,从而超越DEA的计算框架。我们使用合成和实验数据集对GENIX进行基准测试,包括分析流感疫苗诱导的COVID-19患者外周血单核细胞(PBMC)的免疫反应。GENIX成功地模拟了生物网络的关键特征,并揭示了经典DEA遗漏的特征基因,从而拓宽了精准医学中目标基因发现的范围。
    Single-cell RNA sequencing (scRNA-seq) has transformed our understanding of cellular responses to perturbations such as therapeutic interventions and vaccines. Gene relevance to such perturbations is often assessed through differential expression analysis (DEA), which offers a one-dimensional view of the transcriptomic landscape. This method potentially overlooks genes with modest expression changes but profound downstream effects and is susceptible to false positives. We present GENIX (gene expression network importance examination), a computational framework that transcends DEA by constructing gene association networks and employing a network-based comparative model to identify topological signature genes. We benchmark GENIX using both synthetic and experimental datasets, including analysis of influenza vaccine-induced immune responses in peripheral blood mononuclear cells (PBMCs) from recovered COVID-19 patients. GENIX successfully emulates key characteristics of biological networks and reveals signature genes that are missed by classical DEA, thereby broadening the scope of target gene discovery in precision medicine.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    我们提出了一种整合全基因组多组数据的创新策略,它通过利用多任务编码器从高维组学数据中导出的隐藏层特征来促进自适应合并。对八个基准癌症数据集的经验评估证实,我们提出的框架超过了癌症亚型的比较算法,提供优越的亚型结果。在这些子类型结果的基础上,我们建立了一个强大的管道来识别全基因组生物标志物,发掘195个重要的生物标志物。此外,我们进行了详尽的分析,以评估在癌症亚型分型过程中,在全基因组水平上每个组学和非编码区特征的重要性.我们的研究表明,组学和非编码区特征都会对癌症的发展和生存预后产生重大影响。这项研究强调了整合全基因组数据在癌症研究中的潜在和实际意义。证明了全面基因组表征的效力。此外,我们的发现为采用深度学习方法的多组学分析提供了有见地的观点.
    We present an innovative strategy for integrating whole-genome-wide multi-omics data, which facilitates adaptive amalgamation by leveraging hidden layer features derived from high-dimensional omics data through a multi-task encoder. Empirical evaluations on eight benchmark cancer datasets substantiated that our proposed framework outstripped the comparative algorithms in cancer subtyping, delivering superior subtyping outcomes. Building upon these subtyping results, we establish a robust pipeline for identifying whole-genome-wide biomarkers, unearthing 195 significant biomarkers. Furthermore, we conduct an exhaustive analysis to assess the importance of each omic and non-coding region features at the whole-genome-wide level during cancer subtyping. Our investigation shows that both omics and non-coding region features substantially impact cancer development and survival prognosis. This study emphasizes the potential and practical implications of integrating genome-wide data in cancer research, demonstrating the potency of comprehensive genomic characterization. Additionally, our findings offer insightful perspectives for multi-omics analysis employing deep learning methodologies.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    预测细胞对扰动的反应需要对分子调节动力学的可解释见解,以进行可靠的细胞命运控制。尽管潜在相互作用的混杂非线性。人们对开发基于机器学习的扰动响应预测模型以处理扰动数据的非线性越来越感兴趣,但是他们在分子调节动力学方面的解释仍然是一个挑战。或者,为了有意义的生物学解释,布尔网络等逻辑网络模型在系统生物学中广泛用于表示细胞内分子调控。然而,由于高维和不连续的搜索空间,确定大规模网络的适当监管逻辑仍然是一个障碍。为了应对这些挑战,我们提出了一个可扩展的无导数优化器,通过元强化学习为布尔网络模型训练。经过训练的优化器优化的逻辑网络模型成功预测癌细胞系的抗癌药物反应,同时深入了解其潜在的分子调控机制。
    Predicting cellular responses to perturbations requires interpretable insights into molecular regulatory dynamics to perform reliable cell fate control, despite the confounding non-linearity of the underlying interactions. There is a growing interest in developing machine learning-based perturbation response prediction models to handle the non-linearity of perturbation data, but their interpretation in terms of molecular regulatory dynamics remains a challenge. Alternatively, for meaningful biological interpretation, logical network models such as Boolean networks are widely used in systems biology to represent intracellular molecular regulation. However, determining the appropriate regulatory logic of large-scale networks remains an obstacle due to the high-dimensional and discontinuous search space. To tackle these challenges, we present a scalable derivative-free optimizer trained by meta-reinforcement learning for Boolean network models. The logical network model optimized by the trained optimizer successfully predicts anti-cancer drug responses of cancer cell lines, while simultaneously providing insight into their underlying molecular regulatory mechanisms.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    为了解决由于依赖单个时间点样本而忽略关键生态相互作用的局限性,我们开发了一种计算方法,基于种间微生物关系分析单个样品。我们核实,使用数值模拟以及来自人类口腔的真实和混合微生物谱,该方法可以根据单个样本的种间相互作用对它们进行分类。通过分析自闭症谱系障碍患者的肠道微生物组,我们发现我们的基于相互作用的方法可以改善基于单个微生物样本的个体分类。这些结果表明,潜在的生态相互作用可以实际用于促进基于微生物组的诊断和精准医学。
    To address the limitation of overlooking crucial ecological interactions due to relying on single time point samples, we developed a computational approach that analyzes individual samples based on the interspecific microbial relationships. We verify, using both numerical simulations as well as real and shuffled microbial profiles from the human oral cavity, that the method can classify single samples based on their interspecific interactions. By analyzing the gut microbiome of people with autistic spectrum disorder, we found that our interaction-based method can improve the classification of individual subjects based on a single microbial sample. These results demonstrate that the underlying ecological interactions can be practically utilized to facilitate microbiome-based diagnosis and precision medicine.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    细胞条形码是一种谱系追踪方法,可将可遗传的合成条形码与高通量测序相结合,能够在一系列生物环境中准确追踪细胞谱系。最近的研究通过将谱系信息纳入单细胞或空间转录组学读数来扩展这些方法。利用这些数据集中丰富的生物信息需要专用的计算工具进行数据集预处理和分析。这里,我们介绍BARtab,一个可移植和可扩展的Nextflow管道,和bartools,一个开源的R包,旨在提供一个集成的端到端细胞条形码分析工具包。BARtab和bartools包含简化提取的方法,质量控制,分析,和从人口水平可视化谱系条形码,单细胞,和空间转录组学实验。我们展示了我们的集成BARtab和bartools工作流程的效用,通过样本批量分析,单细胞,和包含细胞条形码信息的空间转录组学实验。
    Cellular barcoding is a lineage-tracing methodology that couples heritable synthetic barcodes to high-throughput sequencing, enabling the accurate tracing of cell lineages across a range of biological contexts. Recent studies have extended these methods by incorporating lineage information into single-cell or spatial transcriptomics readouts. Leveraging the rich biological information within these datasets requires dedicated computational tools for dataset pre-processing and analysis. Here, we present BARtab, a portable and scalable Nextflow pipeline, and bartools, an open-source R package, designed to provide an integrated end-to-end cellular barcoding analysis toolkit. BARtab and bartools contain methods to simplify the extraction, quality control, analysis, and visualization of lineage barcodes from population-level, single-cell, and spatial transcriptomics experiments. We showcase the utility of our integrated BARtab and bartools workflow via the analysis of exemplar bulk, single-cell, and spatial transcriptomics experiments containing cellular barcoding information.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    近年来,数据驱动的细胞-细胞通信推断有助于揭示跨细胞类型的协调生物过程。这里,我们集成了两个工具,利亚纳和张量细胞2细胞,which,当合并时,可以部署多种现有方法和资源,以实现跨多个样本的小区-小区通信程序的稳健和灵活的识别。在这项工作中,我们展示了我们的工具的集成如何促进推断细胞-细胞通信的方法的选择,并随后执行无监督的去卷积以获得和总结生物学见解。我们解释了如何在Python和R中一步一步地执行分析,并提供在线教程,详细说明可在https://ccc协议中获得。readthedocs.io/.这个工作流程通常需要1.5h从安装到在图形处理单元启用的计算机上的下游可视化完成~63,000个细胞的数据集,10种细胞类型,12个样本
    In recent years, data-driven inference of cell-cell communication has helped reveal coordinated biological processes across cell types. Here, we integrate two tools, LIANA and Tensor-cell2cell, which, when combined, can deploy multiple existing methods and resources to enable the robust and flexible identification of cell-cell communication programs across multiple samples. In this work, we show how the integration of our tools facilitates the choice of method to infer cell-cell communication and subsequently perform an unsupervised deconvolution to obtain and summarize biological insights. We explain how to perform the analysis step by step in both Python and R and provide online tutorials with detailed instructions available at https://ccc-protocols.readthedocs.io/. This workflow typically takes ∼1.5 h to complete from installation to downstream visualizations on a graphics processing unit-enabled computer for a dataset of ∼63,000 cells, 10 cell types, and 12 samples.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    跨疾病全基因组关联研究(GWASs)揭示了多效性基因座,大部分位于非编码基因组中,每一种都在多种疾病中发挥多效性作用。然而,挑战“W-H-W”(即,是否,如何,以及特定疾病的多效性可以为临床治疗提供信息),需要有效和综合的方法和工具。我们在这里介绍了一种多效性驱动的方法,该方法专门设计用于从跨疾病GWAS汇总数据中确定治疗目标的优先级和评估。通过应用于两种疾病系统(神经精神和炎症)证明了其有效性。我们说明了其在恢复临床概念验证治疗目标方面的改进性能。重要的是,它确定了多效性为临床治疗提供信息的特定疾病。此外,我们展示了它在完成高级任务方面的多功能性,包括通路串扰识别和基于下游串扰的分析。最后,我们的综合解决方案有助于弥合多效性研究和治疗发现之间的差距。
    Cross-disease genome-wide association studies (GWASs) unveil pleiotropic loci, mostly situated within the non-coding genome, each of which exerts pleiotropic effects across multiple diseases. However, the challenge \"W-H-W\" (namely, whether, how, and in which specific diseases pleiotropy can inform clinical therapeutics) calls for effective and integrative approaches and tools. We here introduce a pleiotropy-driven approach specifically designed for therapeutic target prioritization and evaluation from cross-disease GWAS summary data, with its validity demonstrated through applications to two systems of disorders (neuropsychiatric and inflammatory). We illustrate its improved performance in recovering clinical proof-of-concept therapeutic targets. Importantly, it identifies specific diseases where pleiotropy informs clinical therapeutics. Furthermore, we illustrate its versatility in accomplishing advanced tasks, including pathway crosstalk identification and downstream crosstalk-based analyses. To conclude, our integrated solution helps bridge the gap between pleiotropy studies and therapeutics discovery.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

公众号