CP, Cerebral peduncle

  • 文章类型: Journal Article
    Diagnosis of amyotrophic lateral sclerosis (ALS) depends on clinical evidence of combined upper motor neuron (UMN) and lower motor neuron (LMN) degeneration, although ALS patients can present with features predominantly of one or the other. Some UMN-predominant patients show hyperintense signal along the intracranial corticospinal tract (CST) on T2- and proton density (PD)-weighted images (ALS-CST +), and appear to have faster disease progression when compared to those without CST hyperintensity (ALS-CST -). The reason for this is unknown. We hypothesized that diffusion tensor tractography (DTT) would reveal differences in DTI abnormalities along the intracranial CST between these two patient subgroups. Clinical DTI scans were obtained at 1.5T in 14 neurologic controls and 45 ALS patients categorized into two UMN phenotypes based on clinical measures and MRI. DTT was used to quantitatively assess the CST in control and ALS groups. DTT revealed subcortical loss (\'truncation\') of virtual motor CST fibers (presumably) projecting from the precentral gyrus (PrG) in ALS patients but not in controls; in contrast, virtual fibers (presumably) projecting to the adjacent postcentral gyrus (PoG) were spared. No significant differences in virtual CST fiber length were observed between controls and ALS patients. However, the frequency of CST truncation was significantly higher in the ALS-CST + subgroup (9 of 21) than in the ALS-CST - subgroup (4 of 24; p = 0.049), suggesting this finding could differentiate these ALS subgroups. Also, because virtual CST truncation occurred only in the ALS patient group and not in the control group (p = 0.018), this DTT finding could prove to be a diagnostic biomarker of ALS. Significantly shorter disease duration and faster disease progression rate were observed in ALS patients with CST fiber truncation than in those without (p < 0.05). DTI metrics of fractional anisotropy (FA), mean diffusivity (MD), axial diffusivity (AD) and radial diffusivity (RD) were also determined in four regions of interest (ROIs) along the CST, namely: cerebral peduncle (CP), posterior limb of internal capsule (PLIC), centrum semiovale at top of lateral ventricle (CSoLV) and subcortical to primary motor cortex (subPMC). Of note, FA values along the left hemisphere virtual CST tract were significantly different between controls and ALS-CST + patients (p < 0.05) only at the PLIC level, but not at the CSoLV or subPMC level. Also, no significant differences in FA values were observed between ALS subgroups or between control and ALS-CST - groups (p > 0.05) in any of the ROIs. In addition, comparing FA values between ALS patients with CST truncation and those without in the aforementioned four ROIs, revealed no significant differences in either hemisphere. However, visual evaluation of DTT was able to identify UMN degeneration in patients with ALS, particularly in those with a more aggressive clinical disease course and possibly different pathologic processes.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

  • 文章类型: Journal Article
    中风后运动恢复的机制可能涉及存活网络的重组。然而,结构连通性适应性变化的细节还没有得到很好的理解。这里,我们显示了与卒中患者运动恢复相关的白质微结构的长期变化.我们研究了10例皮质下缺血性中风患者,这些患者在最初的临床检查中表现出运动性偏瘫,在最初的弥散加权磁共振成像扫描中,梗死灶位于单侧半球内囊的后肢。参与者在连续三个时间点进行了系列扩散张量成像和运动功能评估;在2周内,发病后1个月和3个月。分析了半球和时间点之间的区域差异的分数各向异性(FA),以及使用基于道的空间统计分析与运动恢复的相关性。结果表明,3个月时,红核和同损侧背桥的FA明显增加,在所有时间点均显着降低了皮损内囊的FA,在大脑花梗中,日冕辐射,3个月时和call体。在相关性分析中,红核中团簇的FA值,背桥,call体的中体,扣带与运动功能恢复呈正相关。我们的研究表明,白质微结构的变化在替代下降的运动束,包括斑纹-脊髓通路,和半球间call骨连接可能在补偿皮质下卒中后的运动障碍中起关键作用。
    The mechanism of motor recovery after stroke may involve reorganization of the surviving networks. However, details of adaptive changes in structural connectivity are not well understood. Here, we show long-term changes in white matter microstructure that relate to motor recovery in stroke patients. We studied ten subcortical ischemic stroke patients who showed motor hemiparesis at the initial clinical examination and an infarcted lesion centered in the posterior limb of internal capsule of the unilateral hemisphere at the initial diffusion-weighted magnetic resonance imaging scan. The participants underwent serial diffusion tensor imaging and motor function assessments at three consecutive time points; within 2 weeks, and at 1 and 3 months after the onset. Fractional anisotropy (FA) was analyzed for regional differences between hemispheres and time points, as well as for correlation with motor recovery using a tract-based spatial statistics analysis. The results showed significantly increased FA in the red nucleus and dorsal pons in the ipsi-lesional side at 3 months, and significantly decreased FA in the ipsi-lesional internal capsule at all time points, and in the cerebral peduncle, corona radiata, and corpus callosum at 3 months. In the correlation analysis, FA values of clusters in the red nucleus, dorsal pons, midbody of corpus callosum, and cingulum were positively correlated with recovery of motor function. Our study suggests that changes in white matter microstructure in alternative descending motor tracts including the rubro-spinal pathway, and interhemispheric callosal connections may play a key role in compensating for motor impairment after subcortical stroke.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

       PDF(Pubmed)

  • 文章类型: Journal Article
    Post-mortem and imaging studies have observed that white matter (WM) degenerates in a pattern inverse to myelin development, suggesting preferential regional vulnerabilities influencing cognitive decline in AD. This study applied novel WM tract integrity (WMTI) metrics derived from diffusional kurtosis imaging (DKI) to examine WM tissue properties in AD within this framework. Using data from amnestic mild cognitive impairment (aMCI, n = 12), AD (n = 14), and normal control (NC; n = 15) subjects, mixed models revealed interaction effects: specific WMTI metrics of axonal density and myelin integrity (i.e. axonal water fraction, radial extra-axonal diffusivity) in late-myelinating tracts (i.e. superior and inferior longitudinal fasciculi) changed in the course of disease, but were stable in the initial stages for early-myelinating tracts (i.e. posterior limb of the internal capsule, cerebral peduncles). WMTI metrics in late-myelinating tracts correlated with semantic verbal fluency, a cognitive function known to decline in AD. These findings corroborate the preferential vulnerability of late-myelinating tracts, and illustrate an application of WMTI metrics to characterizing the regional course of WM changes in AD.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

公众号