CO2 utilization

CO2 利用
  • 文章类型: Journal Article
    CO2矿化产物通常被认为具有降低CO2当量的巨大潜力。排放。然而,对生命周期气候变化影响的不完整考虑通常会破坏这些主张,材料属性,供需约束,和CO2矿化产品的经济可行性。我们详细研究了十种与混凝土相关的CO2矿化产品的这些因素,以量化其单个和全球CO2当量。减排潜力。我们的结果表明,在2020年,全球产生了3.9Gt的可碳化固体材料,主要材料是混凝土和砂浆中的报废水泥浆(1.4Gty-1)。此处研究的所有十项CO2矿化技术均可降低生命周期CO2-eq。用于替代可比常规产品时的排放。2020年,全球CO2-eq。具有经济竞争力的二氧化碳矿化技术的减排潜力为0.39Gt二氧化碳当量。,即,15%来自水泥生产。这个水平的CO2-eq。减排受到报废水泥浆供应的限制。结果还表明,减少CO2-eq便宜2至5倍。从碳酸化报废水泥浆中生产水泥而不是碳捕获和储存(CCS)产生的排放,展示了其优越的脱碳潜力。另一方面,目前,减少CO2-eq的成本要高得多。使用一些二氧化碳矿化技术的排放,比如碳酸化正常重量骨料的生产,而不是CCS。增加从老化基础设施中回收报废水泥浆的技术和政策是释放CO2矿化潜力以减少CO2当量的关键。混凝土材料的足迹。
    CO2 mineralization products are often heralded as having outstanding potentials to reduce CO2-eq. emissions. However, these claims are generally undermined by incomplete consideration of the life cycle climate change impacts, material properties, supply and demand constraints, and economic viability of CO2 mineralization products. We investigate these factors in detail for ten concrete-related CO2 mineralization products to quantify their individual and global CO2-eq. emissions reduction potentials. Our results show that in 2020, 3.9 Gt of carbonatable solid materials were generated globally, with the dominant material being end-of-life cement paste in concrete and mortar (1.4 Gt y-1). All ten of the CO2 mineralization technologies investigated here reduce life cycle CO2-eq. emissions when used to substitute comparable conventional products. In 2020, the global CO2-eq. emissions reduction potential of economically competitive CO2 mineralization technologies was 0.39 Gt CO2-eq., i.e., 15% of that from cement production. This level of CO2-eq. emissions reduction is limited by the supply of end-of-life cement paste. The results also show that it is 2 to 5 times cheaper to reduce CO2-eq. emissions by producing cement from carbonated end-of-life cement paste than carbon capture and storage (CCS), demonstrating its superior decarbonization potential. On the other hand, it is currently much more expensive to reduce CO2-eq. emissions using some CO2 mineralization technologies, like carbonated normal weight aggregate production, than CCS. Technologies and policies that increase recovery of end-of-life cement paste from aged infrastructure are key to unlocking the potential of CO2 mineralization in reducing the CO2-eq. footprint of concrete materials.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    同型乙酸生成是生物利用CO2的重要途径;然而,氧气是一个关键的环境影响因子。这项研究探讨了不同初始氧分压(OPPs)对同乙酸生成的影响,在微氧条件下实施低pH调节可增强乙酸(HAc)的积累。结果表明,5%OPP组的累积HAc产量增加了18.2%,而10%和20%OPP组分别下降31.3%和56.0%,分别,与对照组相比。然而,氢营养型产甲烷菌适应微氧环境,并与同型乙酸菌竞争CO2,从而限制了同型乙酸生成。在5%和10%OPP组中,控制每个循环的进水pH5.0使累积HAc产量增加了18.3%和18.2%,分别,与对照组相比。因此,调节低pH值有效抑制微氧条件下的产甲烷活性,从而增加了HAc的产量。该研究有望扩大同型乙酸在CO2生物利用中的实际应用。
    Homoacetogenesis is an important pathway for bio-utilization of CO2; however, oxygen is a key environmental influencing factor. This study explored the impact of different initial oxygen partial pressures (OPPs) on homoacetogenesis, while implementing low pH regulation enhanced acetic acid (HAc) accumulation under microaerobic conditions. Results indicated that cumulative HAc production increased by 18.2% in 5% OPP group, whereas decreases of 31.3% and 56.0% were observed in 10% and 20% OPP groups, respectively, compared to the control group. However, hydrogenotrophic methanogens adapted to microaerobic environment and competed with homoacetogens for CO2, thus limiting homoacetogenesis. Controlling influent pH 5.0 per cycle increased cumulative HAc production by 18.3% and 18.2% in 5% and 10% OPP groups, respectively, compared with the control group. Consequently, regulating low pH effectively inhibited methanogenic activity under microaerobic conditions, thus increasing HAc production. This study was expected to expand the practical application of homoacetogenesis in bio-utilization of CO2.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    对用于捕获和活化CO2的廉价活性材料的寻找导致了许多旨在开发新催化剂的努力。在这种情况下,地球丰富的过渡金属碳化物(TMC)已经成为有希望的候选者,近几十年来,由于其特殊的耐火性能和耐烧结性,引起了越来越多的关注,焦化,硫磺中毒.在这项工作中,我们评估第5组TMC(VC,NBC,和TaC)作为碳捕获和封存/利用技术的潜在材料,通过结合实验表征技术,基于第一原理的多尺度建模,振动分析,和催化实验。我们的发现表明,VC的化学计量相表现出与CO2的弱相互作用,显示出无法吸附或解离它。然而,VC经常表现出表面碳空位的存在,导致CO2在室温下显著活化并促进其催化氢化。相比之下,化学计量的NbC和TaC相表现出与CO2更强的相互作用,能够在低温下吸附甚至破坏CO2,在TaC的情况下尤其值得注意。然而,NbC和TaC对CO2加氢表现出较差的催化性能。这项工作表明,第5组TMC是减排二氧化碳的潜在材料,强调了表面空位在增强催化活性和吸附能力方面的重要性,并为使用红外光谱作为唯一标识符来检测第5族TMC内的氧碳化物相或表面C空位提供了参考。
    The search for cheap and active materials for the capture and activation of CO2 has led to many efforts aimed at developing new catalysts. In this context, earth-abundant transition metal carbides (TMCs) have emerged as promising candidates, garnering increased attention in recent decades due to their exceptional refractory properties and resistance to sintering, coking, and sulfur poisoning. In this work, we assess the use of Group 5 TMCs (VC, NbC, and TaC) as potential materials for carbon capture and sequestration/utilization technologies by combining experimental characterization techniques, first-principles-based multiscale modeling, vibrational analysis, and catalytic experiments. Our findings reveal that the stoichiometric phase of VC exhibits weak interactions with CO2, displaying an inability to adsorb or dissociate it. However, VC often exhibits the presence of surface carbon vacancies, leading to significant activation of CO2 at room temperature and facilitating its catalytic hydrogenation. In contrast, stoichiometric NbC and TaC phases exhibit stronger interactions with CO2, capable of adsorbing and even breaking of CO2 at low temperatures, particularly notable in the case of TaC. Nevertheless, NbC and TaC demonstrate poor catalytic performance for CO2 hydrogenation. This work suggests Group 5 TMCs as potential materials for CO2 abatement, emphasizes the importance of surface vacancies in enhancing catalytic activity and adsorption capability, and provides a reference for using the infrared spectra as a unique identifier to detect oxy-carbide phases or surface C vacancies within Group 5 TMCs.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    将二氧化碳(CO2)转化为具有两个或多个碳(C2)的增值化学品是一种有前途的策略,不仅可以减轻人为的CO2排放,而且可以减少对化石原料的过度依赖。近年来,原子分散金属催化剂(ADC),包括单原子催化剂(SAC),双原子催化剂(DAC)和单簇催化剂(SCC),由于其独特的性质,成为CO2固定反应的有吸引力的候选者,例如活动站点的最大利用率,可调电子结构,以及催化机理的有效阐明,等。在这次审查中,我们概述了用于光催化的ADC的合成和表征的重大进展,CO2向高价值C2+化合物的电催化和热催化转化。为了为设计针对源自CO2的C2+化学合成的有效ADC提供见解,强调了影响催化活性和选择性的关键因素。最后,讨论了相关的挑战和机遇,以激发在ADC上生成基于CO2的C2+产品的新思路。本文受版权保护。保留所有权利。
    The conversion of carbon dioxide (CO2) into value-added chemicals with two or more carbons (C2+) is a promising strategy that cannot only mitigate anthropogenic CO2 emissions but also reduce the excessive dependence on fossil feedstocks. In recent years, atomically dispersed metal catalysts (ADCs), including single-atom catalysts (SACs), dual-atom catalysts (DACs), and single-cluster catalysts (SCCs), emerged as attractive candidates for CO2 fixation reactions due to their unique properties, such as the maximum utilization of active sites, tunable electronic structure, the efficient elucidation of catalytic mechanism, etc. This review provides an overview of significant progress in the synthesis and characterization of ADCs utilized in photocatalytic, electrocatalytic, and thermocatalytic conversion of CO2 toward high-value C2+ compounds. To provide insights for designing efficient ADCs toward the C2+ chemical synthesis originating from CO2, the key factors that influence the catalytic activity and selectivity are highlighted. Finally, the relevant challenges and opportunities are discussed to inspire new ideas for the generation of CO2-based C2+ products over ADCs.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    仅由CO2和本体烯烃合成单体可回收聚酯在显著减少CO2排放和解决塑料污染问题方面具有巨大潜力。由于与本体烯烃的均聚相比,CO2和本体烯烃直接共聚的动力学缺点,通过六元二取代内酯中间体的开环聚合(ROP)合成聚酯的研究得到了广泛的关注,1,2-亚乙基-6-乙烯基-四氢-2H-吡喃-2-酮(?-L),从CO2和1,3-丁二烯的调聚反应中获得。然而,α-L六元环上的共轭烯烃导致严重的Michael加成副反应。因此,选择性ROP?-L,它可以精确控制用于生产聚酯的重复单元,这些聚酯可能适合于有效的单体回收,仍然是一个尚未解决的挑战。在这里,我们报告了使用有机碱基和N的组合对?-L进行选择性ROP的第一个例子,N'-双[3,5-双(三氟甲基)苯基]脲作为催化体系。脲取代基的系统修饰表明,缺电子的3,5-双(三氟甲基)-苯基的存在是相对于迈克尔加成的非凡开环选择性的关键。在温和的催化条件下,还可以实现低聚(α-L)的有效单体回收。本文受版权保护。保留所有权利。
    Synthesis of monomer-recyclable polyesters solely from CO2 and bulk olefins holds great potential in significantly reducing CO2 emissions and addressing the issue of plastic pollution. Due to the kinetic disadvantage of direct copolymerization of CO2 and bulk olefins compared to homopolymerization of bulk olefins, considerable research attention has been devoted to synthesis of polyester via the ring-opening polymerization (ROP) of a six-membered disubstituted lactone intermediate, 1,2-ethylidene-6-vinyl-tetrahydro-2H-pyran-2-one (𝜹-L), obtained from telomerization of CO2 and 1,3-butadiene. However, the conjugate olefin on the six-membered ring of 𝜹-L leads to serious Michael addition side reactions. Thus, the selective ROP of 𝜹-L, which can precisely control the repeating unit for the production of polyesters potentially amenable to efficient monomer recycling, remains an unresolved challenge. Herein, the first example of selective ROP of 𝜹-L is reported using a combination of organobase and N,N\'-Bis[3,5-bis(trifluoromethyl)phenyl]urea as the catalytic system. Systematic modifications of the substituent of the urea show that the presence of electron-deficient 3,5-bis(trifluoromethyl)-phenyl groups is the key to the extraordinary selectivity of ring opening over Michael addition. Efficient monomer recovery of oligo(𝜹-L) is also achieved under mild catalytic conditions.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    尼泊尔未来绿色氢发展的机遇伴随着最终用途基础设施的挑战。尽管水力发电丰富,但工业对化石燃料的严重依赖(63.4%)对尼泊尔的绿色转型构成了额外的挑战。提出的工作旨在研究由于径流河流而储存和利用溢出的水力发电作为进口石油燃料的兼容替代品的可能性。这是通过将来自水电解的绿色氢和来自难以减少的工业的碳捕获的二氧化碳转化为合成甲烷,用于通过Sabatier工艺加热应用来实现的。进行了规模经济研究,以确定建立合成天然气(SNG)生产行业的参考案例(尼泊尔Makwanpur区的工业)的最佳规模。分别对中试规模和参考规模生产单位进行了技术经济评估。进行了不确定性和敏感性分析,以研究项目的盈利能力以及影响生产装置可行性的参数的敏感性。合成天然气生产的参考规模确定为每天40吨(TPD),总资本投资约为7215万美元。电力被确定为影响均化生产成本(LCOP)的最敏感参数。当电价从12NPR/单位(9.2c/单位)补贴到3.55NPR/单位(2.7c/单位)以下时,发现40TPD工厂的价格竞争LPG。在2TPD工厂的情况下,为了有利可图,电价必须补贴到远低于2NPR/kWh。研究得出的结论是,在尼泊尔进行SNG生产的可能性是有利可图的,并且在大规模的价格竞争中具有竞争力,同时由于转换损失而受到较低的回合效率的限制。此外,有人指出,要使试点规模的SNG项目可行,需要政府政策驱动的非常有利的条件。
    Opportunity for future green hydrogen development in Nepal comes with end-use infrastructural challenges. The heavy reliance of industries on fossil fuels (63.4%) despite the abundance of hydroelectricity poses an additional challenge to the green transition of Nepal. The presented work aims to study the possibility of storing and utilizing spilled hydroelectricity due to runoff rivers as a compatible alternative to imported petroleum fuels. This is achieved by converting green hydrogen from water electrolysis and carbon dioxide from carbon capture of hard-to-abate industries into synthetic methane for heating applications via the Sabatier process. An economy-of-scale study was conducted to identify the optimal scale for the reference case (Industries in Makwanpur District Nepal) for establishing the Synthetic Natural Gas (SNG) production industry. The techno-economic assessment was carried out for pilot scale and reference scale production unit individually. Uncertainty and sensitivity analyses were performed to study the project profitability and the sensitivity of the parameters influencing the feasibility of the production plant. The reference scale for the production of Synthetic Natural Gas was determined to be 40 Tons Per Day (TPD), with a total capital investment of around 72.15 Million USD. Electricity was identified as the most sensitive parameter affecting the levelized cost of production (LCOP). The 40 TPD plant was found to be price competitive to LPG when electricity price is subsidized below 3.55 NPR/unit (2.7 c/unit) from 12 NPR/unit (9.2 c/unit). In the case of the 2 TPD plant, for it to be profitable, the price of electricity must be subsidized to well below 2 NPR/kWh. The study concludes that the possibility of SNG production in Nepal is profitable and price-competitive at large scales and at the same time limited by the low round efficiency due to conversion losses. Additionally, it was observed that highly favorable conditions driven by government policies would be required for the pilot-scale SNG project to be feasible.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    由于其理论能量密度高,基于Li的金属CO2电池,Na,或K最近吸引了越来越多的关注,以满足不断增长的CO2再循环和转化为电能的需求。然而,活性阳极材料资源的稀缺性,高成本,以及李的安全问题,Na,和K为实际应用创造了障碍。在这里,我们首次展示了由铁(Fe)阳极和MoS2催化剂沉积的碳阴极组成的高效(η=77.2%)可充电Fe-CO2电池。MoS2催化剂对于在充电和放电过程中以最小的电池超电势成功加速Fe的反应动力学至关重要。Fe-CO2电池的初始比容量较高,为12,500mAhg-1,平均放电电位为0.65V,并且可逆地运行的过电位低于截止容量为500mAhg-1的Li-CO2电池。我们的Fe-CO2电池可以通过消耗1吨CO2和使用1.23吨铁有效地将CO2温室气体转化为电能。
    Because of their high theoretical energy density, metal-CO2 batteries based on Li, Na, or K have attracted increasing attention recently for meeting the growing demands of CO2 recycling and conversion into electrical energy. However, the scarcity of active anode material resources, high cost, as well as safety concerns of Li, Na, and K create obstacles for practical applications. Herein, we demonstrate for the first time a high-efficiency (η = 77.2%) rechargeable Fe-CO2 battery that is composed of iron (Fe) anode and MoS2-catalysts deposited carbon cathode. MoS2 catalysts are crucial to the successful acceleration of reaction kinetics of Fe during charge and discharge with a minimum overpotential of the cell. The Fe-CO2 cell has a higher initial specific capacity of 12,500 mA h g-1 with an average discharge potential of 0.65 V and operates reversibly with a lower overpotential than that of Li-CO2 batteries with a cutoff capacity of 500 mA h g-1. Our Fe-CO2 battery can effectively convert CO2 greenhouse gas into electrical energy by consuming 1 ton of CO2 with usage of 1.23 tons of iron.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    由于大气中的高CO2含量引起了严重的生态问题,减少大气中的二氧化碳排放已经引起了学术界和各国政府的广泛关注。在减轻二氧化碳浓度的许多方法中,化学方法对CO2的捕集和综合利用具有明显的优势,其关键是开发合适的吸附剂和催化剂。已知受挫的路易斯对(FLP)通过未淬灭的路易斯酸位点/路易斯碱基位点与CO2的O/C之间的相互作用结合CO2,同时实现CO2捕获和活化,这使FLP具有更好的CO2利用潜力。然而,如何构建高效的FLP靶向CO2利用和CO2活化机制尚未系统报道。本文首先对二氧化碳捕集领域的最新进展进行了全面的总结,激活,在FLP的帮助下进行改造,包括同质和异质FLP的构建,它们与二氧化碳的相互作用,反应活动,和机理研究。我们还说明了该领域面临的挑战和机遇,以阐明前瞻性研究。
    Due to the serious ecological problems caused by the high CO2 content in the atmosphere, reducing atmospheric CO2 has attracted widespread attention from academia and governments. Among the many ways to mitigate CO2 concentration, the capture and comprehensive utilization of CO2 through chemical methods have obvious advantages, whose key is to develop suitable adsorbents and catalysts. Frustrated Lewis pairs (FLPs) are known to bind CO2 through the interaction between unquenched Lewis acid sites/Lewis base sites with the O/C of CO2, simultaneously achieving CO2 capture and activation, which render FLP better potential for CO2 utilization. However, how to construct efficient FLP targeted for CO2 utilization and the mechanism of CO2 activation have not been systematically reported. This review firstly provides a comprehensive summary of the recent advances in the field of CO2 capture, activation, and transformation with the help of FLP, including the construction of homogeneous and heterogeneous FLPs, their interaction with CO2, reaction activity, and mechanism study. We also illustrated the challenges and opportunities faced in this field to shed light on the prospective research.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    石墨纳米片(GnPs),边缘选择性羧化石墨纳米片(ECGnPs),在边缘用羧酸官能化,增加它们的表面积,并且可高度分散于各种溶剂中。然而,有一个限制,即基面保持完整,因为它只在边缘产生自由基的部分被官能化。这里,我们通过在900°C下流动CO2来激活ECGnPs以具有多孔结构。通过Boudouard反应进行ECGnPs结构的蚀刻,表面积从579m2g-1增加到最大2462m2g-1。此外,用各种吸附气体(CH4,Ar,CO2,H2和N2)根据反应时间。这项研究提供了整体绿色化学,因为与使用常规化学处理进行活化的过程相比,它利用了从制造到活化的CO2。
    Graphitic nanoplatelets (GnPs), edge-selectively carboxylated graphitic nanoplatelets (ECGnPs), are functionalized with a carboxylic acid at the edge increasing their surface area, and are highly dispersible in various solvents. However, there is a limit in that the basal plane remains intact because it is functionalized only in the part where the radical is generated at the edge. Here, we activate ECGnPs to have porous structures by flowing CO2 at 900 °C. Etching of the ECGnPs structure was performed through the Boudouard reaction, and the surface area increased from 579 m2 g-1 to a maximum of 2462 m2 g-1. In addition, the pore structure was investigated with various adsorption gases (CH4, Ar, CO2, H2, and N2) according to the reaction time. This study provides the overall green chemistry in that it utilizes CO2 from manufacturing to activation compared to the process of activating with conventional chemical treatment.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    H2驱动的微生物电合成(MES)是一种新兴的生物电化学技术,可以从CO2中生产复杂的化合物。尽管MES系统中微生物发酵的性能与H2的产率密切相关,高性能的金属H2释放催化剂(HEC)产生细胞毒性H2O2和金属阳离子从不希望的副反应,严重损害微生物。在这里,一种新颖的自解毒金属HEC设计,导致生物良性H2产生,据报道。Cu/NiMo复合材料HEC通过将O2还原动力学改变为四电子途径来抑制H2O2的析出,并随后在顺序的催化和电化学途径中分解不可避免产生的H2O2。此外,在表面原位生成的富Cu层防止NiMo腐蚀和释放细胞毒性Ni阳离子。因此,MES系统中的Cu/NiMo复合HEC在将CO2转化为生物聚合物的自养细菌CupriavidusnecatorH16的性能方面增加了50%,聚(3-羟基丁酸)。这项工作成功地证明了在设计用于生物电化学应用以及MES系统的生物相容性材料中自我解毒的概念。
    H2-driven microbial electrosynthesis (MES) is an emerging bioelectrochemical technology that enables the production of complex compounds from CO2. Although the performance of microbial fermentation in the MES system is closely related to the H2 production rate, high-performing metallic H2-evolving catalysts (HEC) generate cytotoxic H2O2 and metal cations from undesirable side reactions, severely damaging microorganisms. Herein, a novel design for self-detoxifying metallic HEC, resulting in biologically benign H2 production, is reported. Cu/NiMo composite HEC suppresses H2O2 evolution by altering the O2 reduction kinetics to a four-electron pathway and subsequently decomposes the inevitably generated H2O2 in sequential catalytic and electrochemical pathways. Furthermore, in situ generated Cu-rich layer at the surface prevents NiMo from corroding and releasing cytotoxic Ni cations. Consequently, the Cu/NiMo composite HEC in the MES system registers a 50% increase in the performance of lithoautotrophic bacterium Cupriavidus necator H16, for the conversion of CO2 to a biopolymer, poly(3-hydroxybutyrate). This work successfully demonstrates the concept of self-detoxification in designing biocompatible materials for bioelectrochemical applications as well as MES systems.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

公众号