CO2 reduction reaction

CO2 还原反应
  • 文章类型: Journal Article
    将CO2电催化还原为具有较高经济价值的C2产品,为实现资源化的CO2利用提供了一种有前途的策略。合理设计和构建双位点以实现CO质子化和C-C偶联,从而揭示其结构-性能相关性,对于催化电化学CO2还原反应具有重要意义。在这里,构造了在第一壳层上由卤素配位的具有不同位点距离的Cu-Cu双位点,并显示出更高的分子内电子再分散和配位对称构型。长程Cu-Cu(Cu-I-Cu)双位点显示C2产品的法拉第效率增强,高达74.1%,和出色的稳定性。此外,公开了长程Cu-Cu双位点加速至C2H4生成和短程Cu-Cu(Cu-Cl-Cu)双位点有利于C2H5OH形成的线性关系。原位电化学衰减全反射表面增强红外吸收光谱,原位拉曼和理论计算表明,长程Cu-Cu双位点可以削弱CO氢化和C-C耦合的反应能垒,以及加速*CH2CHO的脱氧。这项研究揭示了利用与位置距离相关的电化学性质来引导CO2还原途径,以及通过构建所需的Cu-Cu双位点来靶向C2合成的潜在通用策略。
    Electrocatalytic reduction of CO2 into C2 products of high economic value provides a promising strategy to realize resourceful CO2 utilization. Rational design and construct dual sites to realize the CO protonation and C-C coupling to unravel their structure-performance correlation is of great significance in catalysing electrochemical CO2 reduction reactions. Herein, Cu-Cu dual sites with different site distance coordinated by halogen at the first-shell are constructed and shows a higher intramolecular electron redispersion and coordination symmetry configurations. The long-range Cu-Cu (Cu-I-Cu) dual sites show an enhanced Faraday efficiency of C2 products, up to 74.1%, and excellent stability. In addition, the linear relationships that the long-range Cu-Cu dual site is accelerated to C2H4 generation and short-range Cu-Cu (Cu-Cl-Cu) dual site is beneficial for C2H5OH formation are disclosed. In situ electrochemical attenuated total reflection surface enhanced infrared absorption spectroscopy, in situ Raman and theoretical calculations manifest that long-range Cu-Cu dual sites can weaken reaction energy barriers of CO hydrogenation and C-C coupling, as well as accelerating deoxygenation of *CH2CHO. This study uncovers the exploitation of site-distance-dependent electrochemical property to steer the CO2 reduction pathway, as well as a potential generic tactic to target C2 synthesis by constructing the desired Cu-Cu dual sites.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    电化学CO2还原反应(CO2RR)转化为高价值的碳化合物,例如CO和HCOOH是利用和转化排放的CO2的有前途的策略。然而,CO2RR对HCOOH的选择性通常小于90%,并且在狭窄的电压范围内运行,限制了其实际应用。在这里,我们提出了一种新型的异质结构气凝胶作为CO2RR对HCOOH的高效电催化剂。该催化剂由嵌入在还原的氧化石墨烯基质中的Cu-Sn-Ox固溶体(Cu-Sn-Ox/rGO)组成。将Cu2+结合到SnO2基质中通过改善*OCHO中间体的吸附和抑制H2释放来增强HCOOH的产生,正如现场测量和计算研究所证实的那样。因此,Cu-Sn-Ox/rGO对于HCOOH实现高达91.4%的显著的法拉第效率(FE),并且在宽的工作电压范围(-0.8至-1.1V)内保持高选择性。此外,组装的Zn-CO2电池表现出1.14mW/cm2的出色功率密度和超过25h的出色稳定性。
    The electrochemical CO2 reduction reaction (CO2RR) into high-value carbon compounds such as CO and HCOOH is a promising strategy for the utilization and conversion of emitted CO2. However, the selectivity of the CO2RR for HCOOH is typically less than 90% and operates within a narrow voltage range, which limits its practical application. Herein, we propose a novel heterostructural aerogel as a highly efficient electrocatalyst for CO2RR to HCOOH. This catalyst consists of Cu-Sn-Ox solid solutions embedded in a reduced graphene oxide matrix (Cu-Sn-Ox/rGO). The incorporation of Cu2+ into the SnO2 matrix enhances HCOOH production by improving the adsorption of the *OCHO intermediate and inhibiting H2 evolution, as confirmed by in situ measurements and computational studies. As a result, Cu-Sn-Ox/rGO achieves a remarkable Faradaic efficiency (FE) of up to 91.4% for HCOOH and maintains high selectivity over a broad operating voltage range (-0.8 to -1.1 V). Additionally, the assembled Zn-CO2 batteries demonstrated an excellent power density of 1.14 mW/cm2 and exceptional stability for over 25 h.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    光催化剂中原子分散的活性位点提供了独特的优势,如局部调谐的电子结构,量子尺寸效应,和最大限度地利用原子物种。其中,非对称原子双位点是特别感兴趣的,因为它们的非对称电荷分布产生局部内置电势以增强电荷分离和转移。此外,双位点为调整复杂的多电子和多反应途径提供了灵活性,如CO2还原反应。双位点的协调为工程结构-活性-选择性关系开辟了新的可能性。这个全面的概述讨论了光催化CO2还原中的有效和可持续的光催化过程,专注于战略性活动现场设计和未来挑战。它为光催化转化工艺的设计和开发提供了及时的参考,特别探索利用不对称原子双位点进行复杂的光催化转化途径,这里的例子是二氧化碳转化为有价值的化学物质。
    Atomically dispersed active sites in a photocatalyst offer unique advantages such as locally tuned electronic structures, quantum size effects, and maximum utilization of atomic species. Among these, asymmetric atomic dual-sites are of particular interest because their asymmetric charge distribution generates a local built-in electric potential to enhance charge separation and transfer. Moreover, the dual sites provide flexibility for tuning complex multielectron and multireaction pathways, such as CO2 reduction reactions. The coordination of dual sites opens new possibilities for engineering the structure-activity-selectivity relationship. This comprehensive overview discusses efficient and sustainable photocatalysis processes in photocatalytic CO2 reduction, focusing on strategic active-site design and future challenges. It serves as a timely reference for the design and development of photocatalytic conversion processes, specifically exploring the utilization of asymmetric atomic dual-sites for complex photocatalytic conversion pathways, here exemplified by the conversion of CO2 into valuable chemicals.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    通过电化学CO2还原反应(CO2RR)开发用于选择性甲酸盐生产的高效电催化剂受到高超电势的挑战,高法拉第效率(FEformate)的窄潜在窗口,和有限的电流密度(Jformate)。在这里,我们报告了具有表面锚定的十六烷基三甲基溴化铵(CTAB)的分层BiOBr(CT/h-BiOBr),用于甲酸选择性大规模CO2RR电催化。CT/h-BiOBr在很宽的电势范围(-0.5至-1.1V)内实现了90%以上的FE甲酸盐,在-0.7V时工业级J甲酸盐超过100mA·cm-2。现场调查揭示了重建的Bi(110)表面作为活性相,CTAB发挥双重作用:其疏水性烷基链创造了富含CO2的微环境,虽然它的极头组微调电子结构,培育一个高度活跃的阶段。这项工作为表面活性剂在电催化中的作用提供了有价值的见解,并指导了用于大规模CO2RR的电催化剂的设计。
    Developing efficient electrocatalysts for selective formate production via the electrochemical CO2 reduction reaction (CO2RR) is challenged by high overpotential, a narrow potential window of high Faradaic efficiency (FEformate), and limited current density (Jformate). Herein, we report a hierarchical BiOBr (CT/h-BiOBr) with surface-anchored cetyltrimethylammonium bromide (CTAB) for formate-selective large-scale CO2RR electrocatalysis. CT/h-BiOBr achieves over 90% FEformate across a wide potential range (-0.5 to -1.1 V) and an industrial-level Jformate surpassing 100 mA·cm-2 at -0.7 V. In situ investigations uncover the reconstructed Bi(110) surface as the active phase, with CTAB playing a dual role: its hydrophobic alkyl chains create a CO2-enriching microenvironment, while its polar head groups fine-tune the electronic structure, fostering a highly active phase. This work provides valuable insights into the role of surfactants in electrocatalysis and guides the design of electrocatalysts for the large-scale CO2RR.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    固体氧化物电解池(SOEC)在将CO2转化为有价值的燃料和化学品方面显示出巨大的希望,然而,开发高效的电极材料提出了巨大的挑战。钙钛矿氧化物,以其稳定性而闻名的SOEC电极,需要提高电催化活性和电导率。在这里,钒(V)阳离子被新引入Sr2Fe1.5Mo0.5O6-δ钙钛矿的B位,以促进其电化学性能。可变价态V5代替Mo6并产生氧空位有助于改善电子电导率并增强CO2还原的电催化活性。值得注意的是,基于Sr2Fe1.5Mo0.4V0.1O6-δ的对称SOEC在1.5V和800°C下实现1.56Acm-2的电流密度,在300小时内保持出色的耐久性。理论分析揭示了V掺杂促进氧空位的形成,导致CO2还原的高固有电催化活性。这些发现为在CO2转化技术中推进电催化剂提供了可行且容易的策略。
    Solid oxide electrolysis cells (SOECs) show significant promise in converting CO2 to valuable fuels and chemicals, yet exploiting efficient electrode materials poses a great challenge. Perovskite oxides, known for their stability as SOEC electrodes, require improvements in electrocatalytic activity and conductivity. Herein, vanadium(V) cation is newly introduced into the B-site of Sr2Fe1.5Mo0.5O6-δ perovskite to promote its electrochemical performance. The substitution of variable valence V5+ for Mo6+ along with the creation of oxygen vacancies contribute to improved electronic conductivity and enhanced electrocatalytic activity for CO2 reduction. Notably, the Sr2Fe1.5Mo0.4V0.1O6-δ based symmetrical SOEC achieves a current density of 1.56 A cm-2 at 1.5 V and 800 °C, maintaining outstanding durability over 300 h. Theoretical analysis unveils that V-doping facilitates the formation of oxygen vacancies, resulting in high intrinsic electrocatalytic activity for CO2 reduction. These findings present a viable and facile strategy for advancing electrocatalysts in CO2 conversion technologies.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    为了促进从依赖碳能源的社会向可持续发展的社会过渡,常规工程策略,遇到与固有材料特性相关的限制,应该经历范式转变。从理论的角度来看,氧析出反应(OER)的自旋依赖性特征揭示了自旋极化策略在增强电化学(EC)反应性能方面的潜力。手性诱导的自旋选择性(CISS)现象由于其在实现新突破方面的潜在用途而引起了前所未有的关注。本文从旨在提高基于CISS现象的EC系统的自旋相关OER效率的实验结果开始。通过各种分析方法验证了自旋极化对EC系统的适用性,以阐明自旋依赖性反应途径的理论基础和机理。然后将讨论扩展到基于CISS效应的光电化学系统中的有效自旋控制策略。探索自旋态控制对动力学和热力学方面的影响,这种观点还讨论了CISS现象引起的自旋极化对自旋相关OER的影响。最后,讨论了增强自旋依赖性氧化还原系统性能的未来方向,包括扩展到各种化学反应和具有自旋控制能力的材料的开发。
    To facilitate the transition from a carbon-energy-dependent society to a sustainable society, conventional engineering strategies, which encounter limitations associated with intrinsic material properties, should undergo the paradigm shift. From a theoretical viewpoint, the spin-dependent feature of oxygen evolution reaction (OER) reveals the potential of a spin-polarization strategy in enhancing the performance of electrochemical (EC) reactions. The chirality-induced spin selectivity (CISS) phenomenon attracts unprecedented attention owing to its potential utility in achieving novel breakthroughs. This paper starts with the experimental results aimed at enhancing the efficiency of the spin-dependent OER focusing on the EC system based on the CISS phenomenon. The applicability of spin-polarization to EC system is verified through various analytical methodologies to clarify the theoretical groundwork and mechanisms underlying the spin-dependent reaction pathway. The discussion is then extended to effective spin-control strategies in photoelectrochemical system based on the CISS effect. Exploring the influence of spin-state control on the kinetic and thermodynamic aspects, this perspective also discusses the effect of spin polarization induced by the CISS phenomenon on spin-dependent OER. Lastly, future directions for enhancing the performance of spin-dependent redox systems are discussed, including expansion to various chemical reactions and the development of materials with spin-control capabilities.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    对绿色储能技术的进步和减少碳足迹的追求正朝着碳中和的方向发展。含水可充电Zn-CO2电池(ARZCB)具有同时遇到这两个目标的巨大潜力,即,绿色能源储存和二氧化碳转化为增值化学品/燃料。ARZCB效率的主要描述与在放电(CO2还原)和充电(O2析出)过程中在阴极处发生的反应有关,这些反应具有不同的基本机理,因此要求使用两种不同的催化剂。这提出了一个整体复杂和昂贵的电池系统,需要一个具体的解决方案,而双功能阴极催化剂对两个反应的开发和应用可以降低复杂性和成本,因此可以是ARZCB的关键。然而,尽管研究兴趣不断增加,研究仍在进行,很少报道对双功能催化剂的系统评估。在这次审查中,对ARZCB的双功能阴极催化剂的需求以及与策略相关的挑战进行了严格的评估。提供了详细的进展检查和对ARZCB双功能催化剂设计的了解。这篇综述将启发未来的研究,通过开发高效的双功能阴极催化剂来提高ARZCB的性能。本文受版权保护。保留所有权利。
    The quest for the advancement of green energy storage technologies and reduction of carbon footprint is determinedly rising toward carbon neutrality. Aqueous rechargeable Zn-CO2 batteries (ARZCBs) hold the great potential to encounter both the targets simultaneously, i.e., green energy storage and CO2 conversion to value-added chemicals/fuels. The major descriptor of ARZCBs efficiency is allied with the reactions occurring at cathode during discharging (CO2 reduction) and charging (O2 evolution) which own different fundamental mechanisms and hence mandate the employment of two different catalysts. This presents an overall complex and expensive battery system which requires a concrete solution, while the development and application of a bifunctional cathode catalyst toward both reactions could reduce the complexity and cost and thus can be a pivotal for ARZCBs. However, despite the increasing research interest and ongoing research, a systematic evaluation of bifunctional catalysts is rarely reported. In this review, the need of bifunctional cathode catalysts for ARZCBs and associated challenges with strategies have been critically assessed. A detailed progress examination and understanding toward designing of bifunctional catalyst for ARZCBs have been provided. This review will enlighten the future research approaching boosted performance of ARZCBs through the development of efficient bifunctional cathode catalysts.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    具有不对称配位的双原子催化剂(DAC)对于增强电化学二氧化碳还原的益处和促进可持续发展至关重要。然而,DAC的合理设计仍然具有挑战性。在这里,我们合成了具有新型硫桥连Cu-S-Ni位点(命名为Cu-S-Ni/SNC)的原子分散催化剂,利用生物质羊毛角蛋白作为前体。羊毛角蛋白中丰富的二硫键克服了传统气相S配体蚀刻工艺的局限性,并能够一步形成S桥接位点。X射线吸收光谱(XAS)证实了具有N2Cu-S-NiN2部分的双金属位点的存在。在H细胞中,Cu-S-Ni/SNC在-0.65V相对于RHE显示98.1%的高CO法拉第效率。受益于金属位点和桥接硫原子之间的电荷调谐效应,在流动池中-1.00V时可实现550mAcm-2的大电流密度。此外,原位XAS,衰减全反射表面增强红外吸收光谱(ATR-SEIRAS),和密度泛函理论(DFT)计算表明Cu作为主要吸附位点是由Ni和S原子双重调节的,这增强了CO2活化并加速了*COOH中间体的形成。这种不对称双金属原子催化剂可能为原子材料的精确制备和性能调节开辟了新的能源应用途径。本文受版权保护。保留所有权利。
    Double-atom catalysts (DACs) with asymmetric coordination are crucial for enhancing the benefits of electrochemical carbon dioxide reduction and advancing sustainable development, however, the rational design of DACs is still challenging. Herein, this work synthesizes atomically dispersed catalysts with novel sulfur-bridged Cu-S-Ni sites (named Cu-S-Ni/SNC), utilizing biomass wool keratin as precursor. The plentiful disulfide bonds in wool keratin overcome the limitations of traditional gas-phase S ligand etching process and enable the one-step formation of S-bridged sites. X-ray absorption spectroscopy (XAS) confirms the existence of bimetallic sites with N2Cu-S-NiN2 moiety. In H-cell, Cu-S-Ni/SNC shows high CO Faraday efficiency of 98.1% at -0.65 V versus RHE. Benefiting from the charge tuning effect between the metal site and bridged sulfur atoms, a large current density of 550 mA cm-2 can be achieved at -1.00 V in flow cell. Additionally, in situ XAS, attenuated total reflection surface-enhanced infrared absorption spectroscopy (ATR-SEIRAS), and density functional theory (DFT) calculations show Cu as the main adsorption site is dual-regulated by Ni and S atoms, which enhances CO2 activation and accelerates the formation of *COOH intermediates. This kind of asymmetric bimetallic atom catalysts may open new pathways for precision preparation and performance regulation of atomic materials toward energy applications.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    小Cu团簇是二氧化碳(CO2RR)电催化还原的优秀候选物,它们的催化性能预计会受到底物和团簇之间相互作用的显著影响。在这项研究中,我们系统地研究了锚定在JanusMoSX上的Cu3簇的CO2RR(X=Se,Te)使用密度泛函理论计算的基底。这些基板的特征是破碎的垂直镜像对称,它产生自发的面外极化,并提供两个不同的极性表面来支持Cu3团簇。我们的发现表明,Cu3团簇上的CO2RR性能受MoSX的极化方向和强度的强烈影响(X=Se,Te)基底。值得注意的是,S终止的MoSTe表面上支持的Cu3簇(Cu3(S)@MoSTe)显示出最高的CO2RR活性,产生甲烷。这些结果强调了底物极化在调节反应物和反应中间体的结合强度方面的关键作用。从而提高CO2RR效率。
    Small Cu clusters are excellent candidates for the electrocatalytic reduction of carbon dioxide (CO2RR), and their catalytic performance is expected to be significantly influenced by the interaction between the substrate and cluster. In this study, we systematically investigate the CO2RR for a Cu3 cluster anchored on Janus MoSX (X = Se, Te) substrates using density functional theory calculations. These substrates feature a broken vertical mirror symmetry, which generates spontaneous out-of-plane polarization and offers two distinct polar surfaces to support the Cu3 cluster. Our findings reveal that the CO2RR performance on the Cu3 cluster is strongly influenced by the polarization direction and strength of the MoSX (X = Se, Te) substrates. Notably, the Cu3 cluster supported on the S-terminated MoSTe surface (Cu3(S)@MoSTe) demonstrates the highest CO2RR activity, producing methane. These results underscore the pivotal role of substrate polarization in modulating the binding strength of reactants and reaction intermediates, thereby enhancing the CO2RR efficiency.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    电化学二氧化碳(CO2)还原反应(CO2RR)到有价值的液体燃料,例如甲酸/甲酸(HCOOH/HCOO-)是碳中和的有前途的策略。增强CO-2RR活性同时保持高选择性对于商业化至关重要。为了解决这个问题,我们通过简单的水解方法开发了金属掺杂的铋(Bi)纳米片。这些掺杂的纳米片使用多孔固体电解质(PSE)层有效地产生高纯度HCOOH。在评估的金属掺杂Bi催化剂中,与原始Bi相比,共掺杂Bi表现出改善的CO2RR性能,在200mAcm-2的电流密度下,以〜1.0V的低超电势实现〜90%的HCOO选择性和增强的活性。在固体电解质反应器中,在100mAcm-2的电流密度下运行100小时后,共掺杂的Bi保持了〜72%的HCOOH法拉第效率,在3.2V时产生0.1MHCOOH。这项研究表明,Bi纳米片中的金属掺杂改变了化学组成,元素分布,和形态学,通过调节表面吸附亲和力和反应性提高CO2RR催化活性性能。
    Electrochemical carbon dioxide (CO2) reduction reaction (CO2RR) to valuable liquid fuels, such as formic acid/formate (HCOOH/HCOO-) is a promising strategy for carbon neutrality. Enhancing CO2RR activity while retaining high selectivity is critical for commercialization. To address this, we developed metal-doped bismuth (Bi) nanosheets via a facile hydrolysis method. These doped nanosheets efficiently generated high-purity HCOOH using a porous solid electrolyte (PSE) layer. Among the evaluated metal-doped Bi catalysts, Co-doped Bi demonstrated improved CO2RR performance compared to pristine Bi, achieving ~90 % HCOO- selectivity and boosted activity with a low overpotential of ~1.0 V at a current density of 200 mA cm-2. In a solid electrolyte reactor, Co-doped Bi maintained HCOOH Faradaic efficiency of ~72 % after a 100-hour operation under a current density of 100 mA cm-2, generating 0.1 M HCOOH at 3.2 V. Density functional theory (DFT) results revealed that Co-doped Bi required a lower applied potential for HCOOH generation from CO2, due to stronger binding energy to the key intermediates OCHO* compared to pure Bi. This study shows that metal doping in Bi nanosheets modifies the chemical composition, element distribution, and morphology, improving CO2RR catalytic activity performance by tuning surface adsorption affinity and reactivity.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

公众号