CO2 electroreduction

CO2 电还原
  • 文章类型: Journal Article
    描述了一种能够在CO2还原反应中改变氧化铜电催化剂选择性的生物启发聚合物膜。在受控的湿度条件下,通过湿沉积技术将膜沉积在氧化铜薄膜的顶部,并自组装成贯穿聚合物横截面的微米级孔的排列网络。该膜由具有精确控制比例的聚-4-乙烯基吡啶和聚(甲基丙烯酸甲酯)嵌段(PMMA-b-P4VP)的嵌段共聚物组成。固有的疏水性,连同膜表面的多孔性,诱导高于中性pH的Cassie-Baxter润湿转变,导致催化剂表面的水排斥。因此,在CO2电还原反应条件下,催化剂表面与周围的水分子隔绝,和CO2分子优先位于催化活性区域附近。因此,CO2还原反应在动力学上优于析氢反应(HER)。
    A bioinspired polymeric membrane capable of shifting the selectivity of a copper oxide electrocatalyst in the CO2 reduction reaction is described. The membrane is deposited on top of copper oxide thin films from wet deposition techniques under controlled conditions of humidity and self-assembles into an arranged network of micrometer-sized pores throughout the polymer cross-section. The membrane was composed of a block copolymer with a precisely controlled ratio of poly-4-vinylpyridine and poly(methyl methacrylate) blocks (PMMA-b-P4VP). The intrinsic hydrophobicity, together with the porous nature of the membrane\'s surface, induces a Cassie-Baxter wetting transition above neutral pH, resulting in water repulsion from the catalyst surface. As a consequence, the catalyst\'s surface is shielded from surrounding water molecules under CO2 electroreduction reaction conditions, and CO2 molecules are preferentially located in the vicinity of the catalytically active area. The CO2 reduction reaction is therefore kinetically favored over the hydrogen evolution reaction (HER).
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    将二氧化碳(CO2)深度电解还原为高价值乙烯(C2H4)非常有吸引力。然而,C-C偶联的缓慢动力学严重导致CO2对C2H4的电还原选择性低。在这里,我们报告了一种铜基多面体(Cu2),具有均匀分布和原子精确的双Cu单元,这可以稳定*OCCO偶极以促进C-C偶联用于高选择性C2H4生产。C2H4法拉第效率(FE)达到51%,电流密度为469.4mAcm-2,远优于Cu单中心催化剂(CuSAC)(〜0%)。此外,Cu2催化剂具有较高的周转频率(TOF,〜520h-1)与Cu纳米颗粒(〜9.42h-1)和CuSAC(〜0.87h-1)相比。原位表征和理论计算表明,独特的Cu2结构构型可以优化偶极矩并稳定*OCCO吸附物以促进C2H4的生成。
    Deeply electrolytic reduction of carbon dioxide (CO2) to high-value ethylene (C2H4) is very attractive. However, the sluggish kinetics of C-C coupling seriously results in the low selectivity of CO2 electroreduction to C2H4. Herein, we report a copper-based polyhedron (Cu2) that features uniformly distributed and atomically precise bi-Cu units, which can stabilize *OCCO dipole to facilitate the C-C coupling for high selective C2H4 production. The C2H4 faradaic efficiency (FE) reaches 51% with a current density of 469.4 mA cm-2, much superior to the Cu single site catalyst (Cu SAC) (~0%). Moreover, the Cu2 catalyst has a higher turnover frequency (TOF, ~520 h-1) compared to Cu nanoparticles (~9.42 h-1) and Cu SAC (~0.87 h-1). In situ characterizations and theoretical calculations revealed that the unique Cu2 structural configuration could optimize the dipole moments and stabilize the *OCCO adsorbate to promote the generation of C2H4.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    电化学氧还原反应(ORR)和二氧化碳还原反应(CO2RR)在可再生能源相关设备和碳中性封闭循环中具有重要意义,而稳健和高效的电催化剂的发展仍然是挑战。在这里,混合电催化剂,具有分层N上的轴向N配位Fe单原子位点,P-共掺杂多孔碳载体和Fe纳米团簇作为电子储库(FeNCs/FeSAs-NPC),通过分子间氢键共组装引发的超分子聚合物前体的原位热转化制造。FeNCs/FeSAs-NPC催化剂在碱性溶液中表现出优异的氧还原活性,半波电位为0.91V,以及在-0.40至-0.85V的宽电位窗口中超过90%的高CO2对CO的法拉第效率(FE),以及优异的电化学耐久性。理论计算表明,Fe纳米团簇的电子储存效应可以触发原子Fe部分的电子再分布,促进O2和CO2分子的活化,降低速率确定步骤的能量壁垒,从而有助于加速ORR和CO2RR动力学。这项工作提供了一种有效的电子耦合催化剂的设计,该催化剂具有先进的单原子与纳米团簇共存,以实现有效的ORR和CO2RR。
    Electrochemical oxygen reduction reaction (ORR) and carbon dioxide reduction reaction (CO2RR) are greatly significant in renewable energy-related devices and carbon-neutral closed cycle, while the development of robust and highly efficient electrocatalysts has remained challenges. Herein, a hybrid electrocatalyst, featuring axial N-coordinated Fe single atom sites on hierarchically N, P-codoped porous carbon support and Fe nanoclusters as electron reservoir (FeNCs/FeSAs-NPC), is fabricated via in situ thermal transformation of the precursor of a supramolecular polymer initiated by intermolecular hydrogen bonds co-assembly. The FeNCs/FeSAs-NPC catalyst manifests superior oxygen reduction activity with a half-wave potential of 0.91 V in alkaline solution, as well as high CO2 to CO Faraday efficiency (FE) of surpassing 90% in a wide potential window from -0.40 to -0.85 V, along with excellent electrochemical durability. Theoretical calculations indicate that the electron reservoir effect of Fe nanoclusters can trigger the electron redistribution of the atomic Fe moieties, facilitating the activation of O2 and CO2 molecules, lowering the energy barriers for rate-determining step, and thus contributing to the accelerated ORR and CO2RR kinetics. This work offers an effective design of electron coupling catalysts that have advanced single atoms coexisting with nanoclusters for efficient ORR and CO2RR.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    金属有机骨架(MOF)相关的Cu材料是促进电化学CO2还原以生产有价值的化学原料的有希望的候选材料。然而,许多MOF材料不可避免地在还原条件下进行重建;因此,利用MOF材料的重组对于合理设计针对多碳产品(C2)的高性能催化剂至关重要。在这里,选择一种简便的溶剂工艺来制造具有阴离子骨架的HKUST-1(a-HKUST-1),并将其用作碱性CO2RR的预催化剂。a-HKUST-1催化剂可以在操作反应条件下电化学还原为Cu,具有显著的结构重构。阴离子HKUST-1衍生的Cu催化剂(aHD-Cu)在碱性电解质中的-150mAcm-2下的FEC2H4为56%,FEC2为≈80%。所得的aHD-Cu催化剂具有高电化学活性表面积和低配位位点。原位拉曼光谱表明,aHD-Cu表面显示出较高的*CO中间体覆盖率,这有利于碳氢化合物的生产。
    Metal-organic frameworks (MOFs)-related Cu materials are promising candidates for promoting electrochemical CO2 reduction to produce valuable chemical feedstocks. However, many MOF materials inevitable undergo reconstruction under reduction conditions; therefore, exploiting the restructuring of MOF materials is of importance for the rational design of high-performance catalyst targeting multi-carbon products (C2). Herein, a facile solvent process is choosed to fabricate HKUST-1 with an anionic framework (a-HKUST-1) and utilize it as a pre-catalyst for alkaline CO2RR. The a-HKUST-1 catalyst can be electrochemically reduced into Cu with significant structural reconstruction under operating reaction conditions. The anionic HKUST-1 derived Cu catalyst (aHD-Cu) delivers a FEC2H4 of 56% and FEC2 of ≈80% at -150 mA cm-2 in alkaline electrolyte. The resulting aHD-Cu catalyst has a high electrochemically active surface area and low coordinated sites. In situ Raman spectroscopy indicates that the aHD-Cu surface displays higher coverage of *CO intermediates, which favors the production of hydrocarbons.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    电化学CO2还原反应(ECO2RR)是将CO2转化为高价值化学产品的有前途的策略。然而,合成能够将CO2转化为特定产物的有效且稳定的电催化剂仍然是一个巨大的挑战。在这里,我们报告了一种模板调节策略,用于制备具有丰富孔隙率的Bi2O3衍生的纳米片催化剂,以实现预期有效的CO2至甲酸盐转化。所得的多孔铋纳米片(p-Bi)不仅表现出甲酸盐(FE甲酸盐)的明显法拉第效率,在H型电池中,在-0.75至-1.1V的宽电位范围内超过91%,但在商业上重要的气体扩散电池中,在262mAcm-2的高电流密度下,也表现出明显的94%的FE甲酸酯。最先进的X射线吸收近边缘结构光谱(XANES)和理论计算揭示了p-Bi催化剂独特的甲酸盐生产性能,这是由其较小的尺寸共同贡献的,丰富的多孔结构,和更强的Bi-O键,从而加速CO2的吸收并促进随后中间体的形成。这项工作为制造具有高平面和多孔形态的铋基催化剂提供了一种途径,用于广泛的应用组合。
    The electrochemical CO2 reduction reaction (ECO2RR) is a promising strategy for converting CO2 into high-value chemical products. However, the synthesis of effective and stable electrocatalysts capable of transforming CO2 into a specified product remains a huge challenge. Herein, we report a template-regulated strategy for the preparation of a Bi2O3-derived nanosheet catalyst with abundant porosity to achieve the expectantly efficient CO2-to-formate conversion. The resultant porous bismuth nanosheet (p-Bi) not only exhibited marked Faradaic efficiency of formate (FEformate), beyond 91% in a broad potential range from -0.75 to -1.1 V in the H-type cell, but also demonstrated an appreciable FEformate of 94% at a high current density of 262 mA cm-2 in the commercially important gas diffusion cell. State-of-the-art X-ray absorption near edge structure spectroscopy (XANES) and theoretical calculation unraveled the distinct formate production performance of the p-Bi catalyst, which was cocontributed by its smaller size, plentiful porous structure, and stronger Bi-O bond, thus accelerating the absorption of CO2 and promoting the subsequent formation of intermediates. This work provides an avenue to fabricate bismuth-based catalysts with high planar and porous morphologies for a broad portfolio of applications.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    将过量的CO2升级为甲酸的电合成具有重要的研究和商业利益。然而,同时实现CO2至甲酸盐转化的高选择性和工业上相关的电流密度仍然是实际实施的巨大挑战。这里,通过将Sn离子注入到沸石Y的骨架结构中,将超小In0.2Sn0.8合金纳米团簇浸渍到定制的12环框架的超笼中。In0.2Sn0.8纳米合金与沸石载体之间的显着电子和几何相互作用导致电子密度的离域,从而增强了In活性位点和*OCHO中间体之间的轨道杂化。因此,降低了限速*OCHO形成步骤的能量势垒,促进CO2电催化加氢为甲酸。因此,开发的沸石电催化剂实现了322mAcm-2的工业级部分电流密度和98.2%的甲酸盐生产的显着法拉第效率,并在工业相关的电流密度下稳定地将法拉第效率保持在93%以上超过102小时。这项工作为基于导电沸石的电催化剂从CO2电解进行工业级甲酸电合成提供了新的机会,并实现了实用的电催化和能量转化。
    Upgrading excess CO2 toward the electrosynthesis of formic acid is of significant research and commercial interest. However, simultaneously achieving high selectivity and industrially relevant current densities of CO2-to-formate conversion remains a grand challenge for practical implementations. Here, an electrically conductive zeolite support is strategically designed by implanting Sn ions into the skeleton structure of a zeolite Y, which impregnates ultrasmall In0.2Sn0.8 alloy nanoclusters into the supercages of the tailored 12-ring framework. The prominent electronic and geometric interactions between In0.2Sn0.8 nanoalloy and zeolite support lead to the delocalization of electron density that enhances orbital hybridizations between In active site and *OCHO intermediate. Thus, the energy barrier for the rate-limiting *OCHO formation step is reduced, facilitating the electrocatalytic hydrogenation of CO2 to formic acid. Accordingly, the developed zeolite electrocatalyst achieves an industrial-level partial current density of 322 mA cm-2 and remarkable Faradaic efficiency of 98.2% for formate production and stably maintains Faradaic efficiency above 93% at an industrially relevant current density for over 102 h. This work opens up new opportunities of conductive zeolite-based electrocatalysts for industrial-level formic acid electrosynthesis from CO2 electrolysis and toward practically accessible electrocatalysis and energy conversion.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    智能金属-金属氧化物异质界面结构具有广阔的潜力,可以为电化学CO2还原反应(CO2RR)提供有效的电子再分布。然而,受到内在线性缩放关系的抑制,由于电子能级的变化,竞争性中间体的结合能将同时发生变化,这使得很难专门为目标中间体和最终的CO2RR性能定制结合能。尽管如此,创建对目标中间体具有选择性的特定吸附位点可能会破坏线性缩放关系。为了验证它,Ag纳米团簇锚定在富含氧空位的CeO2纳米棒(Ag/OV-CeO2)上,用于CO2RR,发现氧空位驱动的异质界面可以有效地促进CO2RR在整个电势窗口中转化为CO,其中在流动池内390mV的低超电势下,在-0.9V时的最大CO法拉第效率(FE)为96.3%,而令人印象深刻的高COFE超过62.3%。实验和计算结果共同表明,氧空位驱动的异界面电荷溢出赋予了Ag的最佳电子结构,并引入了仅可识别*COOH的额外吸附位点,which,除了线性缩放关系之外,提高了对*COOH的结合能,而不阻碍*CO解吸,从而导致有效的CO2RR对CO。
    Smart metal-metal oxide heterointerface construction holds promising potentials to endow an efficient electron redistribution for electrochemical CO2 reduction reaction (CO2RR). However, inhibited by the intrinsic linear-scaling relationship, the binding energies of competitive intermediates will simultaneously change due to the shifts of electronic energy level, making it difficult to exclusively tailor the binding energies to target intermediates and the final CO2RR performance. Nonetheless, creating specific adsorption sites selective for target intermediates probably breaks the linear-scaling relationship. To verify it, Ag nanoclusters were anchored onto oxygen vacancy-rich CeO2 nanorods (Ag/OV-CeO2) for CO2RR, and it was found that the oxygen vacancy-driven heterointerface could effectively promote CO2RR to CO across the entire potential window, where a maximum CO Faraday efficiency (FE) of 96.3% at -0.9 V and an impressively high CO FE of over 62.3% were achieved at a low overpotential of 390 mV within a flow cell. The experimental and computational results collectively suggested that the oxygen vacancy-driven heterointerfacial charge spillover conferred an optimal electronic structure of Ag and introduced additional adsorption sites exclusively recognizable for *COOH, which, beyond the linear-scaling relationship, enhanced the binding energy to *COOH without hindering *CO desorption, thus resulting in the efficient CO2RR to CO.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    铋基催化剂上的可再生能源驱动的电催化CO2还原反应(CO2RR)显示出将CO2转化为甲酸和甲酸,同时关闭碳循环的巨大前景。在这里,我们报道了一种高性能的BiFeO3/Bi25FeO40预催化剂,与可逆氢电极(vsRHE)相比,在-0.75V的流动池中,甲酸盐的部分电流密度为359.8mAcm-2,甲酸盐的形成速率为6.71mmolh-1cm-2。此外,它显示在-0.64V和RHE下88小时稳定的甲酸盐生产,总电流密度为160mAcm-2。对CO2RR对甲酸盐的令人印象深刻的电催化性能可能归因于在BiFeO3/Bi25FeO40预催化剂的原位电化学重建后紧密存在的单个Bi原子和双金属BiFe纳米颗粒的协同作用。这项工作为开发用于CO2RR的高效Bi基催化剂提供了新的见解。
    Renewable energy-driven electrocatalytic CO2 reduction reaction (CO2RR) over bismuth-based catalysts shows great promise for converting CO2 into formic acid and formate while closing the carbon cycle. Herein, we report a high-performance BiFeO3/Bi25FeO40 precatalyst, which delivers a formate partial current density of 359.8 mA cm-2 and a formate formation rate of 6.71 mmol h-1 cm-2 in a flow cell at -0.75 V versus reversible hydrogen electrode (vs RHE). Furthermore, it shows stable formate production for 88 h at -0.64 V vs RHE with a total current density of 160 mA cm-2. The impressive electrocatalytic performance toward CO2RR to formate is likely ascribed to the synergistic effect of single Bi atoms and bimetallic BiFe nanoparticles present in close proximity after in situ electrochemical reconstruction of the BiFeO3/Bi25FeO40 precatalyst. This work presents new insights into the development of highly efficient Bi-based catalysts for the CO2RR.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    电化学CO2还原反应(CO2RR)是一种吸引人的碳利用方法。碱性CO2电解槽表现出高CO2RR活性,低全电池电压,和成本效益。然而,由(双)碳酸盐形成引起的CO2损失问题导致过度的能量消耗,使该过程在经济上不切实际。在这项研究中,我们提出了一种三层聚合物电解质(TPE),包括多孔阴离子交换膜(PAEM)和双极膜(BPM),以促进碱性CO2RR。这种TPE能够使催化剂表面附近的高碱度和BPM的PAEM和阳离子交换层(CEL)之间的界面处的H+通量共存。在KOH进料的膜电极组件(MEA)反应器中,有利于将CO2还原为多碳产物和(碳酸氢盐)碳酸盐去除的条件。作为一个结果,我们实现了C2H4的法拉第效率(FE)约为46%,相当于在260mAcm-2时的C2FE为64%,在140mAcm-2时的CO2到C2H4单程转化率(SPC)约为32%-几乎是常规AEM-MEA电解槽中极限SPC的1.3倍。此外,TPE-MEA电解槽中的CO2还原与甲醛氧化反应(FOR)在100mAcm-2时将全电池电压降至2.3V,而不会损害C2H4FE。
    The electrochemical CO2 reduction reaction (CO2RR) is an appealing method for carbon utilization. Alkaline CO2 electrolyzers exhibit high CO2RR activity, low full-cell voltages, and cost-effectiveness. However, the issue of CO2 loss caused by (bi)carbonate formation leads to excessive energy consumption, rendering the process economically impractical. In this study, we propose a trilayer polymer electrolyte (TPE) comprising a perforated anion exchange membrane (PAEM) and a bipolar membrane (BPM) to facilitate alkaline CO2RR. This TPE enables the coexistence of high alkalinity near the catalyst surface and the H+ flux at the interface between the PAEM and the cation exchange layer (CEL) of the BPM, conditions favoring both CO2 reduction to multicarbon products and (bi)carbonate removal in KOH-fed membrane electrode assembly (MEA) reactors. As a result, we achieve a Faradaic efficiency (FE) of approximately 46 % for C2H4, corresponding to a C2+ FE of 64 % at 260 mA cm-2, with a CO2-to-C2H4 single-pass conversion (SPC) of approximately 32 % at 140 mA cm-2-nearly 1.3 times the limiting SPC in conventional AEM-MEA electrolyzers. Furthermore, coupling CO2 reduction with formaldehyde oxidation reaction (FOR) in the TPE-MEA electrolyzer reduces the full-cell voltage to 2.3 V at 100 mA cm-2 without compromising the C2H4 FE.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    已经探索了单个Fe位点作为用于将CO2还原为增值CO的反应的有前途的催化剂。在这里,我们介绍了一种新颖的熔盐合成策略,用于在超薄富缺陷碳纳米片上开发轴向氮配位Fe-N5位点,旨在精确调节反应途径。这种独特的结构削弱了Fe位点的自旋极化,促进活化中间体的动态平衡,并促进活性Fe位点的*COOH形成和*CO解吸之间的平衡。值得注意的是,合成的FeN5,负载在富含缺陷的氮掺杂碳(FeN5@DNC)上,在CO2RR中表现出卓越的性能,在CO生产中实现99%的法拉第效率(-0.4Vvs.RHE)在H细胞中,并在270mAcm-2的电流密度下保持98%的法拉第效率(-1.0Vvs.RHE)在流动池中。此外,FeN5@DNC催化剂被组装为具有24小时循环耐久性的可逆Zn-CO2电池。原位红外光谱和密度泛函理论(DFT)计算表明,轴向N配位牵引会引起晶体场和局部对称性的转变,因此削弱了中心Fe原子的自旋极化并降低了*CO解吸的能垒。
    Single Fe sites have been explored as promising catalysts for the CO2 reduction reaction to value-added CO. Herein, we introduce a novel molten salt synthesis strategy for developing axial nitrogen-coordinated Fe-N5 sites on ultrathin defect-rich carbon nanosheets, aiming to modulate the reaction pathway precisely. This distinctive architecture weakens the spin polarization at the Fe sites, promoting a dynamic equilibrium of activated intermediates and facilitating the balance between *COOH formation and *CO desorption at the active Fe site. Notably, the synthesized FeN5, supported on defect-rich in nitrogen-doped carbon (FeN5@DNC), exhibits superior performance in CO2RR, achieving a Faraday efficiency of 99% for CO production (-0.4 V vs. RHE) in an H-cell, and maintaining a Faraday efficiency of 98% at a current density of 270 mA cm-2 (-1.0 V vs. RHE) in the flow cell. Furthermore, the FeN5@DNC catalyst is assembled as a reversible Zn-CO2 battery with a cycle durability of 24 hours. In-situ IR spectroscopy and density functional theory (DFT) calculations reveal that the axial N coordination traction induces a transformation in the crystal field and local symmetry, therefore weakening the spin polarization of the central Fe atom and lowering the energy barrier for *CO desorption.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

公众号