CO(2) conversion

  • 文章类型: Journal Article
    甲醇,通过二氧化碳的氢化产生,是一种重要的中间体化合物,在各种有机化学品的生产中起着至关重要的作用。增强用于将CO2转化为甲醇的含铜催化剂的设计是科学文献中的流行策略,尽管在提高二氧化碳转化效率和甲醇生产选择性方面仍然存在挑战。本研究旨在创建CuZnO-M/rGO(M=Mg,Mn,和Cr)催化剂,使用有效的方法将CO2选择性转化为甲醇。通过优化该系统的运行参数,甲醇生产率和CO2转化效率得到提高。在最优条件下,二氧化碳转化率为23.5%,甲醇选择性90%,和0.47gMeOH的时空产率。gcat-1.h-1用CuZnO-MgO(5)/rGO催化剂获得。这些水平在100小时内保持,证明了催化剂体系的稳定性。这些发现与密度泛函理论(DFT)计算高度一致,揭示了CuZnO-MgO(5)/rGO催化剂对CO2具有-0.35eV的吸附能和有利的反应途径,对甲醇生产具有1.16V的超电势,强调了获得的高转化率和选择性。
    Methanol, produced through the hydrogenation of carbon dioxide, is an essential intermediate compound that plays a crucial function in the production of various organic chemicals. Enhancing the design of copper-containing catalysts for the transformation of CO2 to methanol is a popular strategy in scientific literature, although challenges persist in advancing the efficiency of carbon dioxide transformation and the selectivity of methanol production. This research aims at creating CuZnO-M/rGO (M = Mg, Mn, and Cr) catalysts using an efficient method for selectively converting CO2 to methanol. By optimizing the operational parameters of this system, methanol productivity and CO2 conversion efficiency are enhanced. Under optimal conditions, a CO2 conversion rate of 23.5%, methanol selectivity of 90%, and a space-time yield of 0.47 gMeOH.gcat-1.h-1 were achieved with the CuZnO-MgO (5)/rGO catalyst. These levels were maintained over a 100-h period, demonstrating the stability of the catalyst system. These findings are highly consistent with the density functional theory (DFT) calculations, revealing that the CuZnO-MgO (5)/rGO catalyst possesses a -0.35 eV adsorption energy for CO2 and a favorable reaction pathway with the overpotential of 1.16 V towards methanol production emphasizing the high conversion and selectivity obtained.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    尽管它很突出,对CupriavidusnecatorH16进行无机碳吸收和固定的工程能力不足。我们测试了内源性和异源基因在C.necator无机碳代谢中的作用。β-碳酸酐酶的缺失可能对C.necator自养生长具有最有害的影响。与分批培养中的野生型(WT)C.necator相比,用来自蓝细菌和化学自养细菌的几类溶解无机碳(DIC)转运蛋白替代该天然摄取系统恢复了自养生长并支持更高的细胞密度。表达新硫杆菌DAB2(hnDAB2)和各种红宝石同源物的菌株在CO2中的生长与野生型菌株相似。我们的实验表明,在自养生长过程中,碳酸酐酶的主要作用是支持回补代谢,一系列DIC转运蛋白可以补充这一功能。这项工作证明了在C.necator中HCO3-吸收和CO2固定的灵活性,为基于二氧化碳的生物制造提供新的途径。
    Despite its prominence, the ability to engineer Cupriavidus necator H16 for inorganic carbon uptake and fixation is underexplored. We tested the roles of endogenous and heterologous genes on C. necator inorganic carbon metabolism. Deletion of β-carbonic anhydrase can had the most deleterious effect on C. necator autotrophic growth. Replacement of this native uptake system with several classes of dissolved inorganic carbon (DIC) transporters from Cyanobacteria and chemolithoautotrophic bacteria recovered autotrophic growth and supported higher cell densities compared to wild-type (WT) C. necator in batch culture. Strains expressing Halothiobacillus neopolitanus DAB2 (hnDAB2) and diverse rubisco homologs grew in CO2 similarly to the wild-type strain. Our experiments suggest that the primary role of carbonic anhydrase during autotrophic growth is to support anaplerotic metabolism, and an array of DIC transporters can complement this function. This work demonstrates flexibility in HCO3- uptake and CO2 fixation in C. necator, providing new pathways for CO2-based biomanufacturing.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    这项研究提出了一种双向流潮汐生物反应器,旨在增强H2驱动的CO2生物甲烷化。生物反应器在浸入营养液和暴露于H2/CO2之间交替生物膜,从而产生交替的干湿状态。这种潮汐操作可最大程度地减少干燥期间的液膜厚度,并确保湿润期间的养分分布均匀。使用双向H2/CO2供应来减少跨反应器高度的生物膜厚度异质性。CO2生物甲烷反应保持稳定,空床停留时间为9.7min,甲烷(CH4)形成速率为26.8Nm3CH4/(m3·d)。产物气体含有95.0±2.5%CH4,H2/CO2转化效率为90.8%。潮汐操作减轻了溶解和悬浮有机物的积聚,如有机酸和分离的生物膜。生物膜中的优势细菌包括发酵物种,如Petrimonas和利用H2的同型乙酸原,如Sporomusa。富含氢营养产甲烷菌,特别是甲烷细菌,被观察到。总的来说,这项研究强调了生物反应器在提高CO2生物甲烷化方面的有效性。
    This study presents a bidirectional flow tidal bioreactor designed to enhance H2-driven CO2 biomethanation. The bioreactor alternated biofilms between immersion in nutrient solution and exposure to H2/CO2, creating alternating dry and wet states. This tidal operation minimized liquid film thickness during dry periods and ensured uniform nutrient distribution during wet periods. Bidirectional H2/CO2 supply was used to reduce biofilm thickness heterogeneity across the reactor height. CO2 biomethanation remained stable with an empty bed residence time of 9.7 min, achieving a methane (CH4) formation rate of 26.8 Nm3 CH4/(m3·d). The product gas contained 95.0 ± 2.5 % CH4, with a H2/CO2 conversion efficiency of 90.8 %. Tidal operation mitigated the buildup of dissolved and suspended organics, such as organic acids and detached biofilms. Dominant bacteria in biofilms included fermentative species like Petrimonas and H2-utilizing homoacetogens like Sporomusa. Enriched hydrogenotrophic methanogens, particularly Methanobacterium, were observed. Overall, this study highlights the bioreactor\'s effectiveness in improving CO2 biomethanation.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    对使用氮化碳(CN)进行CO2转化的兴趣刺激了对CN合成的广泛研究。在这里,我们报道了使用低成本的市售前体在低温下在短时间内合成两种新型CN材料。两种CN材料,一种衍生自5-氨基四唑(命名为4NZ-CN),另一种衍生自3,5-二氨基-1,2,4-三唑(命名为3NZ-CN)前体,通过在100°C下回流这些前体2小时来制备。4NZ-CN和3NZ-CN催化剂显示出更高的表面积(55.80和52.00m2g-1)和更多的碱性位点(10.05和5.65mmolg-1)比传统的石墨氮化碳(g-C3N4)衍生自三聚氰胺,相应的值分别为9.20m2g-1和0.62mmolg-1。此外,两种CN对CO2环加成到环氧化物的催化活性均比g-C3N4高3倍。使用实验和计算研究的结合确定了结构-活性关系,并提出了催化机理。这项工作为在相对较低的温度下合成新型CN材料提供了一种简便的策略,所开发的催化剂在将CO2转化为增值化学品方面表现出卓越的性能。
    The interest in using carbon nitrides (CN) for CO2 conversion has stimulated extensive research on CN synthesis. Herein, we report the synthesis of two novel CN materials using low-cost commercially available precursors at low temperatures in a short duration of time. Two CN materials, one derived from 5-amino tetrazole (named 4NZ-CN) and the other derived from 3, 5-diamino-1, 2, 4-triazole (named 3NZ-CN) precursors, are prepared by refluxing these precursors for 2 h at 100 °C. 4NZ-CN and 3NZ-CN catalysts show higher surface areas (55.80 and 52.00 m2 g-1) and more basic sites (10.05 and 5.65 mmol g-1) than the conventional graphitic carbon nitride (g-C3N4) derived from melamine, for which the corresponding values are 9.20 m2 g-1 and 0.62 mmol g-1, respectively. In addition, both CN exhibit a 3-fold higher catalytic activity for CO2 cycloaddition to epoxides than g-C3N4. The structure-activity relationship was ascertained using a combination of experimental and computational studies, and a catalytic mechanism was proposed. This work provides a facile strategy for the synthesis of novel CN materials at relatively low temperatures, and the developed catalysts show remarkable performance in the conversion of CO2 to value-added chemicals.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    微生物电合成(MES)细胞利用微生物将二氧化碳转化为有价值的化学产物,如甲烷和乙酸盐的能力,但是高的化学生产速率可能需要由氢气介导,因此需要用于析氢反应(HER)的催化剂。为了避免使用贵金属催化剂,并检查催化剂对电极上微生物产生甲烷的速率的影响,我们使用涂覆有NiMo/C的碳毡阴极,并将性能与裸露的碳毡或Pt/C沉积的阴极进行比较。开发了包含阳离子交换膜的零间隙配置,以产生低内阻,限制pH变化,并增强H2直接运输到生物阴极上的微生物。在相对于Ag/AgCl为-1V的固定阴极电位下,NiMo/C生物阴极可实现23±4A/m2的电流密度和4.7±1.0L/L-d的高甲烷生产率。这种性能与使用贵金属催化剂(Pt/C,23±6A/m2,5.4±2.8L/L-d),比普通碳阴极高3-5倍(8±3A/m2,1.0±0.4L/L-d)。NiMo/C生物阴极运行超过120天,没有可观察到的衰变或严重的阴极催化剂浸出,基于稳态条件下的甲烷产量,平均库仑效率达到53±9%。对生物阴极微生物群落的分析揭示了氢营养型甲烷杆菌属的优势(〜40%),不同材料的生物阴极没有发现显著差异。这些结果表明,HER催化剂通过促进氢气释放到附着的生物膜来提高甲烷生成速率,并且使用非贵金属催化剂和零间隙电池设计,在MES中长期提高甲烷产量是可行的。
    Microbial electrosynthesis (MES) cells exploit the ability of microbes to convert CO2 into valuable chemical products such as methane and acetate, but high rates of chemical production may need to be mediated by hydrogen and thus require a catalyst for the hydrogen evolution reaction (HER). To avoid the usage of precious metal catalysts and examine the impact of the catalyst on the rate of methane generation by microbes on the electrode, we used a carbon felt cathode coated with NiMo/C and compared performance to a bare carbon felt or a Pt/C-deposited cathode. A zero-gap configuration containing a cation exchange membrane was developed to produce a low internal resistance, limit pH changes, and enhance direct transport of H2 to microorganisms on the biocathode. At a fixed cathode potential of -1 V vs Ag/AgCl, the NiMo/C biocathode enabled a current density of 23 ± 4 A/m2 and a high methane production rate of 4.7 ± 1.0 L/L-d. This performance was comparable to that using a precious metal catalyst (Pt/C, 23 ± 6 A/m2, 5.4 ± 2.8 L/L-d), and 3-5 times higher than plain carbon cathodes (8 ± 3 A/m2, 1.0 ± 0.4 L/L-d). The NiMo/C biocathode was operated for over 120 days without observable decay or severe cathode catalyst leaching, reaching an average columbic efficiency of 53 ± 9 % based on methane production under steady state conditions. Analysis of microbial community on the biocathode revealed the dominance of the hydrogenotrophic genus Methanobacterium (∼40 %), with no significant difference found for biocathodes with different materials. These results demonstrated that HER catalysts improved rates of methane generation through facilitating hydrogen gas evolution to an attached biofilm, and that the long-term enhancement of methane production in MES was feasible using a non-precious metal catalyst and a zero-gap cell design.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    阳光驱动的二氧化碳减少到增值化学品是促进碳回收的有效策略。探索具有有效电荷分离的催化剂对于高效CO2光还原至关重要。在这项工作中,通过二胺和功能化三核铜簇的缩合,基于金属簇的共价有机骨架(CuABD)的制备整合了金属有机骨架(MOFs)和共价有机骨架(COFs)的特征,展示了周到的设计策略。据报道,在模拟太阳辐射下,甲酸(HCOOH)的产量为1.3mmolg-1h-1,令人印象深刻,超越了以前报道的许多基于COF和MOF的催化剂的性能。与其同构的无金属结构(称为BDFTD)和裸露的三核Cu簇相比,催化活性极差,CuABD显示出显著增强的CO2还原活性。实验和理论研究表明,二胺单体和环状三核铜(I)单元之间的有效电荷转移,π共轭骨架的电子离域是吸引人的催化性能的原因。总之,这项工作提出了一种结构良好且科学合理的基于金属簇的共价有机框架的探索,用于在阳光下有效减少CO2。
    Sunlight-driven CO2 reduction to value-added chemicals is an effective strategy to promote carbon recycling. The exploration of catalysts with efficient charge separation is crucially important for highly efficient CO2 photoreduction. In this work, the preparation of metal-cluster-based covalent organic framework (CuABD) integrated features from both metal organic frameworks (MOFs) and covalent organic frameworks (COFs) through the condensation of diamines and functionalized trinuclear copper clusters demonstrate a thoughtful design strategy. The reported yield of 1.3 mmol g-1 h-1 for formic acid (HCOOH) under simulated solar irradiation is impressive, surpassing the performance of many COF- and MOF-based catalysts previously reported. Compared to its isomorphic metal-free structure (named BDFTD) and bare trinuclear Cu cluster which present extremely poor catalytic activities, CuABD displays remarkably enhanced CO2 reduction activity. Experimental and theoretical investigations reveal that the efficient charge transfer between diamine monomer and cyclic trinuclear copper (I) units, and the electron delocalization of the π-conjugated framework are responsible for the appealing catalytic performance. In summary, the work presents a well-structured and scientifically sound exploration of a metal-cluster-based covalent organic framework for efficient CO2 reduction under sunlight.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    本研究,第一次,报道了通过简单的原位聚合策略制备核壳聚(离子液体)@ZIF-8纳米复合材料。这些复合材料表现出优异的结构特征,包括高比表面积和高密度路易斯酸/碱和亲核活性位点的整合。结构-活动关系,可重用性,研究了聚(离子液体)@ZIF-8复合材料在CO2和环氧化物之间的环加成反应中的多功能性。通过优化复合材料结构及其催化性能,PIL-Br@ZIF-8(2:1)被认为是一种令人兴奋的催化剂,在温和甚至大气压或模拟烟气条件下合成各种环状碳酸酯时表现出高活性和选择性。此外,催化剂表现出优异的结构稳定性,同时在多个使用周期中保持其催化活性。通过结合DFT计算,我们研究了不同配位微环境中环加成反应的过渡态和中间几何形状,从而提出了涉及多个活性位点的协同催化机理。
    The present study, for the first time, reports the fabrication of core-shell poly(ionic liquids)@ZIF-8 nanocomposites through a facile in-situ polymerization strategy. These composites exhibited exceptional structural characteristics including high specific surface areas and the integration of high-density Lewis acid/base and nucleophilic active sites. The structure-activity relationship, reusability, and versatility of the poly(ionic liquids)@ZIF-8 composites were investigated for the cycloaddition reaction between CO2 and epoxide. By optimizing the composites structures and their catalytic performance, PIL-Br@ZIF-8(2:1) was identified as an exciting catalyst that exhibits high activity and selectivity in the synthesis of various cyclic carbonates under mild or even atmospheric pressure or simulated flue gas conditions. Moreover, the catalyst demonstrated excellent structural stability while maintaining its catalytic activity throughout multiple usage cycles. By combining DFT calculations, we investigated the transition states and intermediate geometries of the cycloaddition reaction in different coordination microenvironments, thereby proposing a synergistic catalytic mechanism involving multiple active sites.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    温室气体(GHG)的人为排放量不断增加,这鼓励了对二氧化碳利用的广泛研究。甲烷的干重整(DRM)描述了将CO2和CH4转化为合成气的可行策略。有价值的化学中间体。在DRM的不同活动阶段中,使用镍作为催化剂在经济上是有利的,但通常由于烧结和碳沉积而失活。在这项工作中,研究了在锆酸铈无机络合物结构中不同负载量下Ni的稳定性,以此作为开发强大的Ni基DRM催化剂的策略。XRD和TPR-H2分析证实了根据这些材料中的Ni负载量存在不同的相。此外,观察到表面Ni以及CeNiO3钙钛矿结构的存在。对其催化活性进行了测试,证明了10wt。%Ni负载量是使转化率最大化的最佳值。还在600和800°C下的长期稳定性实验中测试了该催化剂,以研究在两种不同温度下的潜在失活问题。在600°C时,碳形成是催化失活的主要原因,而在800°C时显示出强大的稳定性,观察到没有烧结的活性相证明这一策略的成功提供了一个新的家族的经济上有吸引力的CO2和沼气混合物升级催化剂。
    The increasing anthropogenic emissions of greenhouse gases (GHG) is encouraging extensive research in CO2 utilisation. Dry reforming of methane (DRM) depicts a viable strategy to convert both CO2 and CH4 into syngas, a worthwhile chemical intermediate. Among the different active phases for DRM, the use of nickel as catalyst is economically favourable, but typically deactivates due to sintering and carbon deposition. The stabilisation of Ni at different loadings in cerium zirconate inorganic complex structures is investigated in this work as strategy to develop robust Ni-based DRM catalysts. XRD and TPR-H2 analyses confirmed the existence of different phases according to the Ni loading in these materials. Besides, superficial Ni is observed as well as the existence of a CeNiO3 perovskite structure. The catalytic activity was tested, proving that 10 wt.% Ni loading is the optimum which maximises conversion. This catalyst was also tested in long-term stability experiments at 600 and 800°C in order to study the potential deactivation issues at two different temperatures. At 600°C, carbon formation is the main cause of catalytic deactivation, whereas a robust stability is shown at 800°C, observing no sintering of the active phase evidencing the success of this strategy rendering a new family of economically appealing CO2 and biogas mixtures upgrading catalysts.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    这项研究调查了H2驱动的CO2生物甲烷化用于集成CO2捕获和转化(iCCC)的用途。用厌氧颗粒污泥接种含有Na2CO3改良的微生物生长培养基的厌氧室。富集的微生物可以通过使用从CO2吸收形成的碳酸氢盐产生甲烷来再生碳酸盐。进行了多次吸收-再生循环,并且对于调节至三种不同pH值(9.0、9.5和10.0)的CO2吸收剂,观察到通过CO2生物甲烷化有效恢复CO2吸收能力和稳定的碳酸盐再循环。pH=10.0组CO2吸收能力最高,第5次循环为65.3mmol/L。在接近再生结束时发生了轻微的碱性抑制,但对iCCC过程的循环性能影响有限。微生物群落主要是利用H2和耐碱的物种,它们可以参与CO2生物甲烷化并在中性和碱性条件下交替生存。
    This study investigated the use of H2-driven CO2 biomethanation for integrated CO2 capture and conversion (iCCC). Anaerobic chambers containing Na2CO3-amended microbial growth medium provided with H2 were inoculated with anaerobic granular sludge. Microorganisms were enriched that could regenerate carbonate by using the bicarbonate formed from CO2 absorption to generate methane. Multiple absorption-regeneration cycles were performed and effective restoration of CO2 absorption capacity and stable carbonate recycling via CO2 biomethanation were observed for CO2 absorbents adjusted to three different pH values (9.0, 9.5, and 10.0). The pH = 10.0 group had the highest CO2 absorption capacity; 65.3 mmol/L in the 5th cycle. A slight alkaline inhibition of acetoclastic methanogenesis occurred near the end of regeneration, but had limited impact on the cyclic performance of the iCCC process. Microbial communities were dominated by H2-utilizing and alkali-tolerant species that could participate in CO2 biomethanation and survive under alternating neutral and alkaline conditions.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    集成多功能位点的新型催化材料的开发对于扩大CO2资源的利用具有重要意义。然而,同时实现高活性和稳定性仍然是一个巨大的挑战。在这项研究中,通过采用热物理复合策略制备一系列ZIF-8(Zn/Co)@g-C3N4纳米复合材料,该策略涉及富氮石墨碳氮化物(g-C3N4)纳米片与ZIF-8(ZnCo)的组合。系统研究了不同组成的g-C3N4和ZIF-8(Zn/Co)对催化剂结构的影响。随后,在不同条件下研究了这些纳米复合材料对CO2和环氧化物之间环加成反应的催化活性。g-C3N4中丰富的Lewis碱基位点的存在促进了CO2活化,而ZIF-8(Zn/Co)中的多个Lewis酸位点能够实现有效的环氧化物活化。通过与助催化剂协同作用,四丁基溴化铵(TBAB),CO2和环氧化物可以在温和或甚至大气压条件下有效地反应以合成相应的环状碳酸酯。优化了催化反应条件,考察了催化剂的回收性能和各种取代基环氧化物的适用范围。g-C3N4和ZIF-8(Zn/Co)的集成使催化材料具有优异的结构稳定性和显著的催化活性,从而为高效CO2转化提供了新的平台。
    The development of novel catalytic materials that integrate multifunctional sites has significant implications for expanding the utilization of CO2 resources. However, simultaneously achieving high activity and stability remains a formidable challenge. In this study, a series of ZIF-8(Zn/Co)@g-C3N4 nanocomposites were prepared by employing a thermo-physical compounding strategy that involved the combination of nitrogen-rich graphitic carbon nitride (g-C3N4) nanosheets with ZIF-8(ZnCo). The influences of different compositions of g-C3N4 and ZIF-8(Zn/Co) on the catalyst structure were systematically investigated. Subsequently, the catalytic activities of these nanocomposites towards the cycloaddition reaction between CO2 and epoxide were examined under different conditions. The presence of abundant Lewis base sites in g-C3N4 facilitates CO2 activation, while multiple Lewis acid sites in ZIF-8(Zn/Co) enable efficient epoxide activation. By working synergistically with a co-catalyst, tetrabutylammonium bromide (TBAB), CO2 and epoxides can be efficiently reacted to synthesize the corresponding cyclic carbonates under mild or even atmospheric pressure conditions. The catalytic reaction conditions were optimized, and both the catalyst\'s recycling performance and the scope of epoxides with various substituents were investigated. The integration of g-C3N4 and ZIF-8(Zn/Co) endows the catalytic material with exceptional structural stability and remarkable catalytic activity, thereby providing a new platform for highly efficient CO2 conversion.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

公众号