CDC25, cell division cycle 25

CDC25 , 细胞分裂周期 25
  • 文章类型: Journal Article
    Polo样激酶(PLK1)已被确定为癌症治疗的潜在靶标。尽管已经研究了许多小分子作为PLK1抑制剂,其中许多显示出有限的选择性。PLK1拥有一个监管域,Polobox域(PBD),具有激酶活性和底物识别的关键调节功能。我们报道了3-溴甲基-苯并呋喃-2-甲酸乙酯(命名为:MCC1019)作为靶向PLK1PBD的选择性PLK1抑制剂。将细胞毒性和基于荧光偏振的筛选应用于1162种药物样化合物的文库,以鉴定PLK1PBD的潜在抑制剂。化合物MC1019对PLK1PBD的活性用荧光偏振和微尺度热泳法证实。该化合物对PLK1比PLK2和PLK3具有特异性。MCC1019在一组不同的癌细胞系中显示出细胞毒性活性。在A549肺腺癌细胞中的机制研究表明,MCC1019通过失活AKT信号通路诱导细胞生长抑制,它还诱导了长时间的有丝分裂停滞——一种被称为有丝分裂灾难的现象,随后通过细胞凋亡和坏死立即死亡。MCC1019在小鼠肺癌模型中体内显著抑制肿瘤生长,而不影响体重或重要器官大小,并减少了肺部转移灶的生长。我们提出MCC1019作为有希望的抗癌候选药物。
    Polo-like kinase (PLK1) has been identified as a potential target for cancer treatment. Although a number of small molecules have been investigated as PLK1 inhibitors, many of which showed limited selectivity. PLK1 harbors a regulatory domain, the Polo box domain (PBD), which has a key regulatory function for kinase activity and substrate recognition. We report on 3-bromomethyl-benzofuran-2-carboxylic acid ethyl ester (designated: MCC1019) as selective PLK1 inhibitor targeting PLK1 PBD. Cytotoxicity and fluorescence polarization-based screening were applied to a library of 1162 drug-like compounds to identify potential inhibitors of PLK1 PBD. The activity of compound MC1019 against the PLK1 PBD was confirmed using fluorescence polarization and microscale thermophoresis. This compound exerted specificity towards PLK1 over PLK2 and PLK3. MCC1019 showed cytotoxic activity in a panel of different cancer cell lines. Mechanistic investigations in A549 lung adenocarcinoma cells revealed that MCC1019 induced cell growth inhibition through inactivation of AKT signaling pathway, it also induced prolonged mitotic arrest-a phenomenon known as mitotic catastrophe, which is followed by immediate cell death via apoptosis and necroptosis. MCC1019 significantly inhibited tumor growth in vivo in a murine lung cancer model without affecting body weight or vital organ size, and reduced the growth of metastatic lesions in the lung. We propose MCC1019 as promising anti-cancer drug candidate.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

       PDF(Pubmed)

  • 文章类型: Journal Article
    Noonan综合征是一种常见的常染色体显性遗传病,以身材矮小为特征,先天性心脏病和面部畸形的发病率为1/1000至2500例活产。到目前为止,已证明几个基因通过RAS-MAP激酶途径参与转导信号的干扰和Noonan综合征的表现。描述的第一个基因是PTPN11,其次是SOS1,RAF1,KRAS,BRAF,NRAS,MAP2K1和RIT1,以及最近的SOS2,LZTR1和A2ML1等。逐步,Noonan综合征的大多数体征的病理生理学和分子病因学已得到证实,和遗传模式以及遗传咨询已经建立。在这次审查中,我们总结了在Noonan综合征中经常观察到的临床特征的数据,然后,我们描述了大多数Noonan综合征致病基因的分子病因和病理生理学.在本文的第二部分,我们评估了迄今为止在大多数筛查研究中报道的Noonan综合征致病基因的突变率.这篇评论应使临床医生和遗传学家全面了解Noonan综合征的分子方面及其致病基因突变事件的真实发生率。这也将有助于为未来的分子诊断研究奠定基础,以及新治疗策略的发展。
    Noonan syndrome is a common autosomal dominant disorder characterized by short stature, congenital heart disease and facial dysmorphia with an incidence of 1/1000 to 2500 live births. Up to now, several genes have been proven to be involved in the disturbance of the transduction signal through the RAS-MAP Kinase pathway and the manifestation of Noonan syndrome. The first gene described was PTPN11, followed by SOS1, RAF1, KRAS, BRAF, NRAS, MAP2K1, and RIT1, and recently SOS2, LZTR1, and A2ML1, among others. Progressively, the physiopathology and molecular etiology of most signs of Noonan syndrome have been demonstrated, and inheritance patterns as well as genetic counseling have been established. In this review, we summarize the data concerning clinical features frequently observed in Noonan syndrome, and then, we describe the molecular etiology as well as the physiopathology of most Noonan syndrome-causing genes. In the second part of this review, we assess the mutational rate of Noonan syndrome-causing genes reported up to now in most screening studies. This review should give clinicians as well as geneticists a full view of the molecular aspects of Noonan syndrome and the authentic prevalence of the mutational events of its causing-genes. It will also facilitate laying the groundwork for future molecular diagnosis research, and the development of novel treatment strategies.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

公众号