C2 domain

C2 域
  • 文章类型: Journal Article
    内质网-质膜接触位点(ER-PMCSs)是在所有真核生物中发现的进化保守的膜结构域,ER与PM紧密接口。这种短距离是通过系链蛋白如突触结合蛋白(SYTs)的作用在植物中实现的。拟南芥包含五个SYT成员(SYT1-SYT5),但是它们是否具有重叠或不同的生物学功能仍然难以捉摸。SYT1,最典型的成员,在抵抗非生物胁迫中起着至关重要的作用。这项研究表明,功能性冗余的SYT1和SYT3基因,但不是SYT5,参与耐盐和耐寒胁迫。我们还表明,与SYT5不同,SYT1和SYT3对于丁香假单胞菌耐药性不需要。由于SYT1和SYT5在体内通过它们的SMP结构域相互作用,这些蛋白质的不同功能不能由它们的定位差异引起。有趣的是,结构系统发育分析表明,SYT1和SYT5进化枝在陆地植物进化的早期出现。我们还表明,SYT1和SYT5进化枝在其C2结构域的SMP和Ca2+结合中表现出不同的结构特征,合理化他们不同的生物学角色。
    Endoplasmic reticulum-plasma membrane contact sites (ER-PM CSs) are evolutionarily conserved membrane domains found in all eukaryotes, where the ER closely interfaces with the PM. This short distance is achieved in plants through the action of tether proteins such as synaptotagmins (SYTs). Arabidopsis comprises five SYT members (SYT1-SYT5), but whether they possess overlapping or distinct biological functions remains elusive. SYT1, the best-characterized member, plays an essential role in the resistance to abiotic stress. This study reveals that the functionally redundant SYT1 and SYT3 genes, but not SYT5, are involved in salt and cold stress resistance. We also show that, unlike SYT5, SYT1 and SYT3 are not required for Pseudomonas syringae resistance. Since SYT1 and SYT5 interact in vivo via their SMP domains, the distinct functions of these proteins cannot be caused by differences in their localization. Interestingly, structural phylogenetic analysis indicates that the SYT1 and SYT5 clades emerged early in the evolution of land plants. We also show that the SYT1 and SYT5 clades exhibit different structural features in their SMP and Ca2+ binding of their C2 domains, rationalizing their distinct biological roles.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    背景:在乳腺癌中,超过三分之一的患者在PIK3CA基因中存在体细胞突变,在其肿瘤细胞中编码磷脂酰肌醇3-激酶(PI3K)的p110α催化亚基。循环肿瘤细胞(CTC)是从原发性肿瘤脱落到血流中的细胞。最近,从液体活检来源的细胞建立了具有致瘤和转移能力的长期稳定的乳腺癌CTC-ITB-01细胞系.在原发肿瘤中检测到致癌热点PIK3CA突变H1047R(激酶结构域),同一患者的CTC和转移。在CTC和阴道转移中检测到位于C2结构域内的其他PIK3CA突变(E418K和E453K),但在原发性肿瘤中未检测到。我们研究的目的是在功能上表征在原发肿瘤中未检测到的C2域内的罕见E418K和E453K突变的影响。
    方法:PIK3CA突变E418K,E453K,H1047R通过定点诱变产生,并通过慢病毒转导在乳腺癌细胞中稳定过表达。通过蛋白质印迹分析检查随后的信号通路激活。使用IncucyteZoom系统通过活细胞成像研究了PIK3CA突变对生物过程的影响。在Pymol中进行结构建模。通过使用超速离心分离胞质和膜部分来评估突变体的膜定位。通过活细胞成像分析CTC-ITB-01细胞的药物敏感性。
    结果:稳定过表达PIK3CA野生型(WT)或E418K之一的人MDA-MB-231,MCF-7和T47D乳腺癌细胞的蛋白质印迹分析,E453K或H1047R突变体揭示了在C2突变体(E418K和E453K)和激酶结构域突变体H1047R中AKT磷酸化的显著增加。功能分析显示过表达E453K和H1047R突变体的MDA-MB-231细胞的增殖显著增加。在所有过表达WT和每种突变体的细胞中迁移增加。有趣的是,侵袭和趋化性仅在过表达C2结构域突变体的MDA-MB-231细胞中增强,即E418K和E453K。此外,两个C2结构域突变体的膜定位增加。E453K突变的结构模型表明,p85α亚基的负调节域与p110α催化亚基之间的相互作用被破坏,这是导致观察到的PI3K/AKT/mTOR信号激活的潜在机制。通过MK2206和RAD001双重靶向AKT/mTOR通路导致非常强的协同作用(IC50MK2206:148nM,IC50RAD001:15nM)通过凋亡诱导在CTC-ITB-01细胞系中增殖。
    结论:我们的结果表明,PIK3CAC2结构域突变激活PI3K下游AKT信号,并可以增加增殖,稳定的慢病毒转导后的迁移和侵袭。尽管两个研究的突变-E418K和E453K-都位于C2域内,可以提出不同的分子机制。PIK3CA突变的CTC-ITB-01显示出对AKT/mTOR双重抑制的高易感性。需要进一步的研究来充分阐明罕见PIK3CA突变的致癌潜力。
    BACKGROUND: In breast cancer, over one third of all patients harbor a somatic mutation in the PIK3CA gene, encoding the p110α catalytic subunit of the phosphatidylinositol 3-kinase (PI3K) in their tumor cells. Circulating tumor cells (CTCs) are cells shed from the primary tumor into the blood stream. Recently, the long-term stable breast cancer CTC-ITB-01 cell line with tumorigenic and metastatic capacity was established from liquid biopsy derived cells. The oncogenic hotspot PIK3CA mutation H1047R (kinase domain) was detected in the primary tumor, CTCs and metastasis of the same patient. Other PIK3CA mutations located within the C2 domain (E418K and E453K) were detected in the CTCs and the vaginal metastasis but not in the primary tumor. The goal of our study was to functionally characterize the impact of the rare E418K and E453K mutations within the C2 domain that were not detected in the primary tumor.
    METHODS: PIK3CA mutations E418K, E453K, H1047R were generated by site-directed mutagenesis and stably overexpressed in breast cancer cells by lentiviral transduction. Subsequent signaling pathway activation was examined by western blot analysis. The impact of PIK3CA mutations on biological processes was studied by live cell imaging using the Incucyte Zoom system. Structural modeling was conducted in Pymol. The membrane localization of the mutants was evaluated by separating the cytosolic and membrane fraction using ultracentrifugation. Drug susceptibility of CTC-ITB-01 cells was analyzed by live cell imaging.
    RESULTS: Western blot analysis of human MDA-MB-231, MCF-7 and T47D breast cancer cells stably overexpressing either the PIK3CA wildtype (WT) or one of the E418K, E453K or H1047R mutants revealed a significant increase in AKT phosphorylation in both C2 mutants (E418K and E453K) and the kinase domain mutant H1047R. Functional analysis showed a significantly increased proliferation of MDA-MB-231 cells overexpressing the E453K and H1047R mutants. Migration was increased in all cells overexpressing WT and each of the mutants. Interestingly, invasion and chemotaxis were only enhanced in the MDA-MB-231 cells overexpressing the C2 domain mutants, i.e. E418K and E453K. In addition, membrane localization of the two C2 domain mutants was increased. Structural modeling of the E453K mutation suggests a disruption of the interaction between the negative regulatory domain of the p85α subunit and the p110α catalytic subunit as a potential mechanism leading to the observed activation of PI3K/AKT/mTOR signaling. Dual targeting of AKT/mTOR pathway by MK2206 and RAD001 leads to very strong synergistic effects (IC50 MK2206: 148 nM, IC50 RAD001: 15 nM) with respect to proliferation in the CTC-ITB-01 line through apoptosis induction.
    CONCLUSIONS: Our results demonstrate that PIK3CA C2 domain mutations activate PI3K downstream AKT signaling and can increase proliferation, migration and invasion after stable lentiviral transduction. Although both investigated mutations - E418K and E453K - are located within the C2 domain, a different molecular mechanism can be proposed. The PIK3CA mutated CTC-ITB-01 shows a high susceptibility against dual inhibition of AKT/mTOR. Further studies are required to fully elucidate the oncogenic potential of rare PIK3CA mutations.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    将凝血因子锚定到膜的阴离子区域涉及C2域作为关键角色。在膜结合时,凝血因子的酶促反应速率增加了几个数量级。然而,速率加速背后的确切机制尚不清楚,主要是因为缺乏对含C2因子和相应复合物的构象动力学的理解。我们通过表征其膜结合特异性脂质-蛋白质相互作用来阐明人凝血因子V(FV-C2)的C2结构域的膜结合形式。采用全原子分子动力学模拟并利用高流动性膜模拟(HMMM)模型,在12次独立模拟中,我们观察到FV-C2与含磷脂酰丝氨酸(PS)的膜在2-25ns内的自发结合。FV-C2通过三个回路与膜相互作用(尖峰1-3),实现融合,方向稳定。自发膜结合的多个HMMM轨迹提供了广泛的采样和充足的数据,以检查膜诱导的对C2构象动力学的影响以及特定的脂质-蛋白质相互作用。尽管现有的晶体结构代表FV-C2的假定“开放”和“封闭”状态,我们的结果表明这些状态之间的结构的连续分布,在晶体环境中观察到的最密集的结构与“开放”和“封闭”状态不同。最后,我们表征了由K23,Q48和S78形成的推定的PS特异性结合位点,位于由尖峰1-3(PS特异性口袋)包围的凹槽中,根据静态晶体结构的分析,与先前的提议相比,提出了结合的头基部分的不同取向。
    Anchoring of coagulation factors to anionic regions of the membrane involves the C2 domain as a key player. The rate of enzymatic reactions of the coagulation factors is increased by several orders of magnitude upon membrane binding. However, the precise mechanisms behind the rate acceleration remain unclear, primarily because of a lack of understanding of the conformational dynamics of the C2-containing factors and corresponding complexes. We elucidate the membrane-bound form of the C2 domain from human coagulation factor V (FV-C2) by characterizing its membrane binding the specific lipid-protein interactions. Employing all-atom molecular dynamics simulations and leveraging the highly mobile membrane-mimetic (HMMM) model, we observed spontaneous binding of FV-C2 to a phosphatidylserine (PS)-containing membrane within 2-25 ns across twelve independent simulations. FV-C2 interacted with the membrane through three loops (spikes 1-3), achieving a converged, stable orientation. Multiple HMMM trajectories of the spontaneous membrane binding provided extensive sampling and ample data to examine the membrane-induced effects on the conformational dynamics of C2 as well as specific lipid-protein interactions. Despite existing crystal structures representing presumed \"open\" and \"closed\" states of FV-C2, our results revealed a continuous distribution of structures between these states, with the most populated structures differing from both \"open\" and \"closed\" states observed in crystal environments. Lastly, we characterized a putative PS-specific binding site formed by K23, Q48, and S78 located in the groove enclosed by spikes 1-3 (PS-specificity pocket), suggesting a different orientation of a bound headgroup moiety compared to previous proposals based upon analysis of static crystal structures.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    富含锚蛋白重复序列的膜跨越(ARMS),跨膜神经元支架蛋白,在神经元生理学中起着至关重要的作用,包括神经元发育,极性,分化,生存和血管生成,通过与不同合作伙伴的互动。先前的研究表明,ARMS通过与Synaptotagmin-4(Syt4)相互作用来负调节脑源性神经营养因子(BDNF)的分泌,从而影响神经发生和神经系统的发育和功能。然而,ARMS/Syt4复合物组装的分子机制尚不清楚.这里,我们证实ARMS通过其N端锚蛋白重复1-8与Syt4直接相互作用.出乎意料的是,Syt4的C2A和C2B结构域都是与ARMS结合所必需的。然后,我们将AlphaFold2预测的复杂结构模型与使用点诱变的系统生化分析相结合,以强调ARMS/Syt4复合物形成的分子基础,并鉴定两个保守残基。武器的E15和W72,作为介导复合物组装的必需残基。此外,我们表明ARMS蛋白不能与Syt1或Syt3相互作用,表明ARMS与Syt4之间的相互作用是特异性的。一起来看,这项研究的发现提供了有关ARMS和Syt4之间相互作用的生化细节,从而为进一步了解ARMS/Syt4复合物形成的潜在机制和功能含义提供了生化基础。特别是关于BDNF分泌和相关神经病变的调节。
    The ankyrin repeat-rich membrane spanning (ARMS), a transmembrane neuronal scaffold protein, plays a fundamental role in neuronal physiology, including neuronal development, polarity, differentiation, survival and angiogenesis, through interactions with diverse partners. Previous studies have shown that the ARMS negatively regulates brain-derived neurotrophic factor (BDNF) secretion by interacting with Synaptotagmin-4 (Syt4), thereby affecting neurogenesis and the development and function of the nervous system. However, the molecular mechanisms of the ARMS/Syt4 complex assembly remain unclear. Here, we confirmed that the ARMS directly interacts with Syt4 through its N-terminal ankyrin repeats 1-8. Unexpectedly, both the C2A and C2B domains of Syt4 are necessary for binding with the ARMS. We then combined the predicted complex structural models from AlphaFold2 with systematic biochemical analyses using point mutagenesis to underline the molecular basis of ARMS/Syt4 complex formation and to identify two conserved residues, E15 and W72, of the ARMS, as essential residues mediating the assembly of the complex. Furthermore, we showed that ARMS proteins are unable to interact with Syt1 or Syt3, indicating that the interaction between ARMS and Syt4 is specific. Taken together, the findings from this study provide biochemical details on the interaction between the ARMS and Syt4, thereby offering a biochemical basis for the further understanding of the potential mechanisms and functional implications of the ARMS/Syt4 complex formation, especially with regard to the modulation of BDNF secretion and associated neuropathies.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    突触α-氨基-3-羟基-5-甲基-4-异恶唑丙酸(AMPA)受体的募集是学习和记忆过程中神经元连通性增强的基础。此过程由N-甲基-D-天冬氨酸(NMDA)受体依赖性突触后Ca2流入触发。Synaptotagmin(Syt)-1和-7已被提议作为AMPA受体胞吐的Ca2传感器,但在功能上是多余的。这里,我们鉴定了一种含有细胞溶质C2结构域的Ca2+结合蛋白,Copine-6,与AMPA受体形成复合物。Copine-6表达的缺失会损害原代神经元中AMPA受体的活性诱导的胞吐作用,由野生型Copine-6而不是Ca2结合突变体拯救。相比之下,Copine-6功能丧失不影响稳态表达或河豚毒素诱导的表面AMPA受体突触升级。Syt-1/Syt-7的缺失显著降低Copine-6蛋白表达。有趣的是,野生型Copine-6的过表达,但不是Ca2+结合突变体,在Syt-1/Syt-7双敲低神经元中恢复AMPA受体的活性依赖性胞吐作用。我们得出的结论是,Copine-6是突触后Ca2传感器,可在突触增强过程中介导AMPA受体胞吐作用。
    The recruitment of synaptic α-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid (AMPA) receptors underlies the strengthening of neuronal connectivity during learning and memory. This process is triggered by N-methyl-D-aspartate (NMDA) receptor-dependent postsynaptic Ca2+ influx. Synaptotagmin (Syt)-1 and -7 have been proposed as Ca2+ sensors for AMPA receptor exocytosis but are functionally redundant. Here, we identify a cytosolic C2 domain-containing Ca2+-binding protein, Copine-6, that forms a complex with AMPA receptors. Loss of Copine-6 expression impairs activity-induced exocytosis of AMPA receptors in primary neurons, which is rescued by wild-type Copine-6 but not Ca2+-binding mutants. In contrast, Copine-6 loss of function does not affect steady-state expression or tetrodotoxin-induced synaptic upscaling of surface AMPA receptors. Loss of Syt-1/Syt-7 significantly reduces Copine-6 protein expression. Interestingly, overexpression of wild-type Copine-6, but not the Ca2+-binding mutants, restores activity-dependent exocytosis of AMPA receptors in Syt-1/Syt-7 double-knockdown neurons. We conclude that Copine-6 is a postsynaptic Ca2+ sensor that mediates AMPA receptor exocytosis during synaptic potentiation.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    背景:质膜中磷脂酰丝氨酸的动力学是真核细胞严格调节的特征。磷脂酰丝氨酸(PS)优先存在于质膜的内小叶中。这种不对称性的破坏导致磷脂酰丝氨酸暴露在细胞表面,并与细胞死亡有关。突触修剪,血液凝固和其他细胞过程。由于磷脂酰丝氨酸在广泛的细胞功能中的作用,需要一个有效的磷脂酰丝氨酸探针来研究它们。目前,有几种不同的磷脂酰丝氨酸标记工具可用;然而,这些标签具有不利的信噪比,并且由于渗透性有限而难以在组织中使用。它们在活组织中的应用需要损伤组织并释放与损伤相关的分子模式的注射程序,这反过来刺激磷脂酰丝氨酸暴露。
    方法:因此,我们基于Lactadherin(MFG-E8)蛋白的C2结构域开发了一种新的遗传编码磷脂酰丝氨酸探针,适合在各种研究模型中标记暴露的磷脂酰丝氨酸。我们通过观察表面等离子体共振角度偏移,测试了C2探针对杂交双层脂质膜上磷脂酰丝氨酸的特异性。然后,我们分析了细胞凋亡诱导后,不同细胞培养系上纯化的融合C2蛋白或组织培养上编码C2探针的工程化AAV。对于体内实验,将嗜神经AAV静脉注射到围产期小鼠中,两周后,收集脑片观察C2-SNAP表达。
    结果:生物物理分析揭示了C2探针对磷脂酰丝氨酸的高度特异性。融合的重组C2蛋白适用于标记各种细胞系中凋亡细胞表面的磷脂酰丝氨酸。我们对AAV进行了工程改造,并在器官型脑组织培养物中验证了它们对遗传编码的C2探针的非侵入性递送,并表明这些探针在静脉内AAV递送至小鼠后在体内大脑中表达。
    结论:我们已经证明,开发的遗传编码的PS生物传感器可以作为C2和C2m2融合蛋白的两组分系统用于多种测定。该系统允许在直接指定的阈值水平下进行精确量化和PS可视化,能够在生理和细胞死亡过程中评估PS暴露。
    BACKGROUND: The dynamics of phosphatidylserine in the plasma membrane is a tightly regulated feature of eukaryotic cells. Phosphatidylserine (PS) is found preferentially in the inner leaflet of the plasma membrane. Disruption of this asymmetry leads to the exposure of phosphatidylserine on the cell surface and is associated with cell death, synaptic pruning, blood clotting and other cellular processes. Due to the role of phosphatidylserine in widespread cellular functions, an efficient phosphatidylserine probe is needed to study them. Currently, a few different phosphatidylserine labelling tools are available; however, these labels have unfavourable signal-to-noise ratios and are difficult to use in tissues due to limited permeability. Their application in living tissue requires injection procedures that damage the tissue and release damage-associated molecular patterns, which in turn stimulates phosphatidylserine exposure.
    METHODS: For this reason, we developed a novel genetically encoded phosphatidylserine probe based on the C2 domain of the lactadherin (MFG-E8) protein, suitable for labelling exposed phosphatidylserine in various research models. We tested the C2 probe specificity to phosphatidylserine on hybrid bilayer lipid membranes by observing surface plasmon resonance angle shift. Then, we analysed purified fused C2 proteins on different cell culture lines or engineered AAVs encoding C2 probes on tissue cultures after apoptosis induction. For in vivo experiments, neurotropic AAVs were intravenously injected into perinatal mice, and after 2 weeks, brain slices were collected to observe C2-SNAP expression.
    RESULTS: The biophysical analysis revealed the high specificity of the C2 probe for phosphatidylserine. The fused recombinant C2 proteins were suitable for labelling phosphatidylserine on the surface of apoptotic cells in various cell lines. We engineered AAVs and validated them in organotypic brain tissue cultures for non-invasive delivery of the genetically encoded C2 probe and showed that these probes were expressed in the brain in vivo after intravenous AAV delivery to mice.
    CONCLUSIONS: We have demonstrated that the developed genetically encoded PS biosensor can be utilised in a variety of assays as a two-component system of C2 and C2m2 fusion proteins. This system allows for precise quantification and PS visualisation at directly specified threshold levels, enabling the evaluation of PS exposure in both physiological and cell death processes.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    Dysferlin是一种在横纹肌中最突出的大膜蛋白。dhferlin活性的丧失与胞吐减少有关,异常的细胞内Ca2+和肌肉疾病肢体带型肌营养不良和Miyoshi肌病。dysferlin的胞质区由七个C2结构域组成,在N端C2A结构域中发生突变,导致病理。尽管Ca2+和C2A结构域的膜结合活性对dhyperlin功能的重要性,域的机制仍然缺乏表征。在这项研究中,我们发现C2A结构域通过结构域凹面上的残基Y23,K32,K33和R77介导的相互作用优先结合含有PI(4,5)P2的膜。我们还发现,在膜结合之后,C2A结构域将Ca2+结合环上的残基插入膜中。对溶液NMR测量的分析表明,该域存在两种不同的结构状态,Ca2+使状态之间的种群向对PI(4,5)P2具有更大亲和力的更刚性结构转移。根据我们的结果,我们提出了一种机制,其中Ca2+从结构动态转换C2A,低PI(4,5)P2亲和力状态到高亲和力状态,该状态通过与Tyr23,K32,K33和R77的相互作用将dhyferlin靶向PI(4,5)P2富集的膜。结合还涉及脂质包装的变化,并通过C2结构域的第三个Ca2结合环插入膜中,这将有助于dysferlin在胞吐和Ca2调节中的功能。
    Dysferlin is a large membrane protein found most prominently in striated muscle. Loss of dysferlin activity is associated with reduced exocytosis, abnormal intracellular Ca2+ and the muscle diseases limb-girdle muscular dystrophy and Miyoshi myopathy. The cytosolic region of dysferlin consists of seven C2 domains with mutations in the C2A domain at the N-terminus resulting in pathology. Despite the importance of Ca2+ and membrane binding activities of the C2A domain for dysferlin function, the mechanism of the domain remains poorly characterized. In this study we find that the C2A domain preferentially binds membranes containing PI(4,5)P2 through an interaction mediated by residues Y23, K32, K33, and R77 on the concave face of the domain. We also found that subsequent to membrane binding, the C2A domain inserts residues on the Ca2+ binding loops into the membrane. Analysis of solution NMR measurements indicate that the domain inhabits two distinct structural states, with Ca2+ shifting the population between states towards a more rigid structure with greater affinity for PI(4,5)P2. Based on our results, we propose a mechanism where Ca2+ converts C2A from a structurally dynamic, low PI(4,5)P2 affinity state to a high affinity state that targets dysferlin to PI(4,5)P2 enriched membranes through interaction with Tyr23, K32, K33, and R77. Binding also involves changes in lipid packing and insertion by the third Ca2+ binding loop of the C2 domain into the membrane, which would contribute to dysferlin function in exocytosis and Ca2+ regulation.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Review
    许多信号过程依赖于质膜的信息解码,膜相关蛋白及其复合物是调节这一过程的基础。关于蛋白质复合物如何组装并在膜位点起作用以改变膜系统的身份和动力学,仍然存在许多问题。含有钙和磷脂结合C2结构域的外周膜蛋白可以通过提供束缚功能以形成蛋白质复合物而在膜相关信号传导中起作用。C2结构域蛋白称为C2-结构域脱酸相关(CAR)蛋白是植物特异性的,这个C2结构域蛋白质亚组的功能相关性刚刚出现。十种拟南芥CAR蛋白CAR1至CAR10具有单个C2结构域,具有植物特异性插入,所谓的“CAR-额外签名”或也称为“sig域”。通过这个“sig结构域”CAR蛋白可以结合不同种类的信号蛋白复合物,并在生物和非生物胁迫中发挥作用,蓝光和铁营养。有趣的是,CAR蛋白可以在膜微结构域中寡聚化,它们在细胞核中的存在可以与核蛋白调节有关。这表明,CAR蛋白可能在协调环境反应和组装所需的蛋白质复合物以在质膜和细胞核之间传递信息线索方面发挥前所未有的作用。这篇综述的目的是总结CAR蛋白家族的结构-功能特征,以及从CAR蛋白相互作用和生理功能的组装发现。从这项比较研究中,我们提取了有关CAR蛋白可能在细胞中实现的分子操作的共同原理。我们还根据CAR蛋白家族的进化和基因表达谱推断其功能特性。我们突出了悬而未决的问题,并提出了新的途径来证明和理解该蛋白质家族在植物中的功能网络和作用。
    Many signaling processes rely on information decoding at the plasma membrane, and membrane-associated proteins and their complexes are fundamental for regulating this process. Still many questions exist as to how protein complexes are assembled and function at membrane sites to change identity and dynamics of membrane systems. Peripheral membrane proteins containing a calcium and phospholipid-binding C2-domain can act in membrane-related signaling by providing a tethering function so that protein complexes form. C2 domain proteins termed C2-DOMAIN ABSCISIC ACID-RELATED (CAR) proteins are plant-specific, and the functional relevance of this C2 domain protein subgroup is just emerging. The ten Arabidopsis CAR proteins CAR1 to CAR10 have a single C2 domain with a plant-specific insertion, the so-called \"CAR-extra-signature\" or also termed \"sig domain\". Via this \"sig domain\" CAR proteins can bind signaling protein complexes of different kinds and act in biotic and abiotic stress, blue light and iron nutrition. Interestingly, CAR proteins can oligomerize in membrane microdomains, and their presence in the nucleus can be linked with nuclear protein regulation. This shows that CAR proteins may play unprecedented roles in coordinating environmental responses and assembling required protein complexes to transmit information cues between plasma membrane and nucleus. The aim of this review is to summarize structure-function characteristics of the CAR protein family and assemble findings from CAR protein interactions and physiological functions. From this comparative investigation we extract common principles about the molecular operations that CAR proteins may fulfill in the cell. We also deduce functional properties of the CAR protein family based on its evolution and gene expression profiles. We highlight open questions and suggest novel avenues to prove and understand the functional networks and roles played by this protein family in plants.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    磷酸酶和张力蛋白同源物(PTEN)和含SH2的肌醇5'-磷酸酶2(SHIP2)在结构上和功能上相似。它们都由磷酸酶(Ptase)结构域和相邻的C2结构域组成,和这两种蛋白质去磷酸化磷酸肌醇-三(3,4,5)磷酸,PI(3,4,5)P3;PTEN在3-磷酸,SHIP2在5-磷酸。因此,它们在PI3K/Akt通路中起关键作用。这里,我们使用分子动力学模拟和自由能计算研究了C2域在PTEN和SHIP2膜相互作用中的作用。人们普遍认为,对于PTEN,C2结构域与阴离子脂质强烈相互作用,因此显着有助于膜募集。相比之下,对于SHIP2中的C2结构域,我们以前发现对阴离子膜的结合亲和力要弱得多。我们的模拟证实了C2结构域在PTEN中的膜锚定作用,以及Ptase结构域在获得其生产性膜结合构象方面的必要性。相比之下,我们发现SHIP2中的C2域不承担这些角色,这通常是针对C2域提出的。我们的数据支持一个模型,其中SHIP2中C2域的主要作用是引入变构域间变化,从而增强Ptase域的催化活性。
    Phosphatase and tensin homologue (PTEN) and SH2-containing inositol 5\'-phosphatase 2 (SHIP2) are structurally and functionally similar. They both consist of a phosphatase (Ptase) domain and an adjacent C2 domain, and both proteins dephosphorylate phosphoinositol-tri(3,4,5)phosphate, PI(3,4,5)P3; PTEN at the 3-phophate and SHIP2 at the 5-phosphate. Therefore, they play pivotal roles in the PI3K/Akt pathway. Here, we investigate the role of the C2 domain in membrane interactions of PTEN and SHIP2, using molecular dynamics simulations and free energy calculations. It is generally accepted that for PTEN, the C2 domain interacts strongly with anionic lipids and therefore significantly contributes to membrane recruitment. In contrast, for the C2 domain in SHIP2, we previously found much weaker binding affinity for anionic membranes. Our simulations confirm the membrane anchor role of the C2 domain in PTEN, as well as its necessity for the Ptase domain in gaining its productive membrane-binding conformation. In contrast, we identified that the C2 domain in SHIP2 undertakes neither of these roles, which are generally proposed for C2 domains. Our data support a model in which the main role of the C2 domain in SHIP2 is to introduce allosteric interdomain changes that enhance catalytic activity of the Ptase domain.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    膜蛋白大致分为跨膜(TM)或外周,具有在给定时间仅与单个双层有关的函数。这里,我们解释了一类含有跨膜和外周结构域的蛋白质,我们称之为跨膜膜阅读器(TMMR)。它们的跨膜和外围元件将它们锚定在一个双层上,并可逆地将它们附着在双层的另一部分上,分别,将它们定位在系链和融合膜上,同时识别诸如磷酸肌醇(PI)之类的信号并修饰其跨膜结构域附近的脂质化学。这里,我们分析了AlphaFold2和Rosetta的全长模型,以及核磁共振(NMR)光谱和X射线晶体学的结构,使用膜最佳对接面积(MODA)程序来映射它们的膜结合表面。真核TMMR包括磷脂结合C1,C2,CRAL-TRIO,FYVE,GRAM,GTPase,MATH,PDZ,PH,PX,SMP,蛋白质中的StART和WD结构域,包括protrudin,分选Nexins和突触。SARS-CoV-2以及其他病毒的刺突蛋白也是TMMR,看到它们被锚定在病毒膜中,同时介导与宿主细胞膜的融合。因此,TMMR在细胞生物学和膜运输中起着关键作用,并包括COVID-19等疾病的药物靶标。
    Membrane proteins are broadly classified as transmembrane (TM) or peripheral, with functions that pertain to only a single bilayer at a given time. Here, we explicate a class of proteins that contain both transmembrane and peripheral domains, which we dub transmembrane membrane readers (TMMRs). Their transmembrane and peripheral elements anchor them to one bilayer and reversibly attach them to another section of bilayer, respectively, positioning them to tether and fuse membranes while recognizing signals such as phosphoinositides (PIs) and modifying lipid chemistries in proximity to their transmembrane domains. Here, we analyze full-length models from AlphaFold2 and Rosetta, as well as structures from nuclear magnetic resonance (NMR) spectroscopy and X-ray crystallography, using the Membrane Optimal Docking Area (MODA) program to map their membrane-binding surfaces. Eukaryotic TMMRs include phospholipid-binding C1, C2, CRAL-TRIO, FYVE, GRAM, GTPase, MATH, PDZ, PH, PX, SMP, StART and WD domains within proteins including protrudin, sorting nexins and synaptotagmins. The spike proteins of SARS-CoV-2 as well as other viruses are also TMMRs, seeing as they are anchored into the viral membrane while mediating fusion with host cell membranes. As such, TMMRs have key roles in cell biology and membrane trafficking, and include drug targets for diseases such as COVID-19.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

公众号