C. elegans

C. 线虫
  • 文章类型: Journal Article
    衰老与线粒体功能障碍和氧化应激增加有关。运动产生内源性活性氧(ROS)并促进线粒体快速重塑。我们使用秀丽隐杆线虫作为模型系统,研究了过氧化物酶2(PRDX-2)在线粒体适应运动和衰老中的作用。在DAF-16转录因子激活和调节线粒体融合基因eat-3介导的运动中,线粒体重塑需要PRDX-2。采用急性锻炼和恢复周期,我们证明了运动诱导的线粒体内质网接触位点(MERCS)组装和线粒体重塑依赖于PRDX-2和DAF-16信号传导。线粒体碎片增加,ROS升高和PRDX-2氧化还原状态改变伴随老化过程中DAF-16核定位受损。同样,prdx-2突变株显示线粒体片段化增加,未能激活线粒体融合所需的DAF-16.总的来说,我们的数据强调了PRDX-2在通过调节DAF-16核定位来协调线粒体重塑以应对生理应激方面的关键作用.
    Ageing is associated with mitochondrial dysfunction and increased oxidative stress. Exercise generates endogenous reactive oxygen species (ROS) and promotes rapid mitochondrial remodelling. We investigated the role of Peroxiredoxin 2 (PRDX-2) in mitochondrial adaptations to exercise and ageing using Caenorhabditis elegans as a model system. PRDX-2 was required for the mitochondrial remodelling in response to exercise mediated by DAF-16 transcription factor activation and regulation of mitochondrial fusion gene eat-3. Employing an acute exercise and recovery cycle, we demonstrated exercise-induced mitochondrial ER contact sites (MERCS) assembly and mitochondrial remodelling dependent on PRDX-2 and DAF-16 signalling. There was increased mitochondrial fragmentation, elevated ROS and an altered redox state of PRDX-2 concomitant with impaired DAF-16 nuclear localisation during ageing. Similarly, the prdx-2 mutant strain exhibited increased mitochondrial fragmentation and a failure to activate DAF-16 required for mitochondrial fusion. Collectively, our data highlight the critical role of PRDX-2 in orchestrating mitochondrial remodelling in response to a physiological stress by regulating DAF-16 nuclear localisation.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    跨膜通道样(TMC)蛋白在整个动物界中表达,并被认为编码离子通道的成分。哺乳动物表达八个TMC(mTMC1-8),其中两个(mTMC1和mTMC2)是机械传导通道的亚基。线虫表达两种TMC(TMC-1和TMC-2),调解机械感觉,产蛋,和碱性传感。线虫TMCs促进这种不同生理过程的机制及其与哺乳动物mTMCs的功能关系尚不清楚。这里,我们表明,与辅助蛋白的关联使线虫TMC-1具有不同的感觉功能。此外,不同的TMC-1域使触摸和碱性传感。引人注目的是,这些结构域在哺乳动物中在mTMC1和mTMC3之间分离。与这些发现一致,哺乳动物的mTMC1可以介导线虫的机械感觉,而mTMC3可以介导碱性感觉。我们得出的结论是,序列多样化和与辅助蛋白的缔合导致了具有不同特性和生理功能的TMC蛋白复合物的出现。
    Transmembrane channel-like (TMC) proteins are expressed throughout the animal kingdom and are thought to encode components of ion channels. Mammals express eight TMCs (mTMC1-8), two of which (mTMC1 and mTMC2) are subunits of mechanotransduction channels. C. elegans expresses two TMCs (TMC-1 and TMC-2), which mediate mechanosensation, egg laying, and alkaline sensing. The mechanisms by which nematode TMCs contribute to such diverse physiological processes and their functional relationship to mammalian mTMCs is unclear. Here, we show that association with accessory proteins tunes nematode TMC-1 to divergent sensory functions. In addition, distinct TMC-1 domains enable touch and alkaline sensing. Strikingly, these domains are segregated in mammals between mTMC1 and mTMC3. Consistent with these findings, mammalian mTMC1 can mediate mechanosensation in nematodes, while mTMC3 can mediate alkaline sensation. We conclude that sequence diversification and association with accessory proteins has led to the emergence of TMC protein complexes with diverse properties and physiological functions.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    蛋白质组完整性是细胞和生物体稳态的基础。线粒体未折叠蛋白反应(UPRmt),蛋白质稳定网络的关键组成部分,响应于远端组织中的线粒体应激而以非细胞自主方式被激活。然而,在生理条件下,组织间通讯对UPRmt诱导性的重要性仍然难以捉摸。这里,我们表明,完整的种系对于秀丽隐杆线虫体细胞组织中强大的UPRmt诱导至关重要。一系列具有种系缺陷的线虫突变体无法对遗传或化学UPRmt诱导物作出反应。我们的遗传分析表明生殖信号,而不是生殖干细胞,负责体细胞UPRmt诱导。与这一观察一致,我们证明UPRmt是性二态的,因为雄性线虫本质上对线粒体应激无反应。我们的发现强调了种系-体细胞交流的范例,并表明生殖停止是与年龄相关的UPRmt下降的主要原因。
    Proteome integrity is fundamental for cellular and organismal homeostasis. The mitochondrial unfolded protein response (UPRmt), a key component of the proteostasis network, is activated in a non-cell-autonomous manner in response to mitochondrial stress in distal tissues. However, the importance of inter-tissue communication for UPRmt inducibility under physiological conditions remains elusive. Here, we show that an intact germline is essential for robust UPRmt induction in the Caenorhabditis elegans somatic tissues. A series of nematode mutants with germline defects are unable to respond to genetic or chemical UPRmt inducers. Our genetic analysis suggests that reproductive signals, rather than germline stem cells, are responsible for somatic UPRmt induction. Consistent with this observation, we show that UPRmt is sexually dimorphic, as male nematodes are inherently unresponsive to mitochondrial stress. Our findings highlight a paradigm of germline-somatic communication and suggest that reproductive cessation is a primary cause of age-related UPRmt decline.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    减数分裂通过两轮染色体分离减少倍性,然后进行一轮DNA复制。在减数分裂I中,同源染色体在减数分裂II时分离,姐妹染色单体彼此分开。拓扑异构酶II(TopoII)是一种保守的酶,通过引入瞬时双链断裂来改变DNA结构。在有丝分裂期间,TopoII可缓解复制过程中与解链DNA相关的拓扑应力,重组,和姐妹染色单体分离。TopoII还在维持有丝分裂染色体结构中起作用。然而,TopoII在减数分裂过程中的作用和调节尚不明确。以前,我们发现了一个TopoII的等位基因,top-2(it7),在秀丽隐杆线虫精子发生减数分裂I期间破坏同源染色体分离。在基因筛选中,我们在5'-酪氨酰-DNA磷酸二酯酶2(Tdp2,秀丽隐杆线虫tdpt-1)中鉴定了不同的点突变,它们抑制了前2(it7)胚胎致死率。Tdp2去除捕获的Top-2-DNA复合物。tdpt-1抑制突变拯救胚胎致死性,改善染色体分离缺陷,并恢复TOP-2蛋白水平的TOP-2(it7)。这里,我们表明,TOP-2和TDPT-1均在生殖系细胞核中表达,但在减数分裂后期之前占据不同的区室。我们还证明了tdpt-1抑制是由于蛋白质功能的丧失,并且tdpt-1突变在减数分裂中不具有独立于top-2(it7)的表型。最后,我们发现tdpt-1抑制突变会损害磷酸二酯酶的活性,影响TDPT-1的稳定性,或破坏蛋白质相互作用。这表明野生型TDPT-1蛋白在减数分裂期间抑制受损的TOP-2的染色体生物学功能。
    Meiosis reduces ploidy through two rounds of chromosome segregation preceded by one round of DNA replication. In meiosis I, homologous chromosomes segregate, while in meiosis II, sister chromatids separate from each other. Topoisomerase II (Topo II) is a conserved enzyme that alters DNA structure by introducing transient double-strand breaks. During mitosis, Topo II relieves topological stress associated with unwinding DNA during replication, recombination, and sister chromatid segregation. Topo II also plays a role in maintaining mitotic chromosome structure. However, the role and regulation of Topo II during meiosis is not well-defined. Previously, we found an allele of Topo II, top-2(it7), disrupts homologous chromosome segregation during meiosis I of Caenorhabditis elegans spermatogenesis. In a genetic screen, we identified different point mutations in 5\'-tyrosyl-DNA phosphodiesterase two (Tdp2, C. elegans tdpt-1) that suppress top-2(it7) embryonic lethality. Tdp2 removes trapped Top-2-DNA complexes. The tdpt-1 suppressing mutations rescue embryonic lethality, ameliorate chromosome segregation defects, and restore TOP-2 protein levels of top-2(it7). Here, we show that both TOP-2 and TDPT-1 are expressed in germ line nuclei but occupy different compartments until late meiotic prophase. We also demonstrate that tdpt-1 suppression is due to loss of function of the protein and that the tdpt-1 mutations do not have a phenotype independent of top-2(it7) in meiosis. Lastly, we found that the tdpt-1 suppressing mutations either impair the phosphodiesterase activity, affect the stability of TDPT-1, or disrupt protein interactions. This suggests that the WT TDPT-1 protein is inhibiting chromosome biological functions of an impaired TOP-2 during meiosis.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    细胞外囊泡(EV)是亚微米膜结构和细胞间通讯的关键介质。1,2最近的研究强调了纤毛衍生的EV在信号转导中的作用。强调了它们作为含有保守纤毛信号蛋白的生物活性胞外细胞器的重要性.3,4瞬时受体电位(TRP)通道多囊素-2(PKD-2)家族的成员存在于绿藻衣藻和线虫秀丽隐杆线虫5,6的纤毛EV和小鼠胚胎节点的EV中并从人类尿液中分离7,8在秀丽隐杆线虫中,PKD-2在男性特异性EV释放感觉神经元中表达,将纤毛尖端延伸到纤毛孔,并直接将电动汽车释放到环境中。6,9男性以机械刺激的方式释放电动汽车,规范电动汽车货物含量,以应对交配伙伴,并在交配过程中在雌雄同体的外阴角质层上沉积PKD-2::GFP标记的EV。9,10组合,我们的研究结果表明,纤毛EV的释放是一个动态过程.在这里,我们使用延时成像识别控制动态EV脱落的机制。纤毛可以维持PKD-2标记的EV的释放2小时。这种延长释放不需要神经元传递。相反,纤毛内在机制调节PKD-2纤毛膜补充和动态EV释放。驱动蛋白-3运动驱动蛋白样蛋白6(KLP-6)是初始和延长EV释放所必需的,而过渡区蛋白NPHP-4仅用于持续的EV释放。在睫状尖端处动态补充PKD-2是持续EV释放的关键。我们的研究提供了实时纤毛EV释放和支持纤毛作为熟练EV释放平台的机制的全面描述。
    Extracellular vesicles (EVs) are submicron membranous structures and key mediators of intercellular communication.1,2 Recent research has highlighted roles for cilia-derived EVs in signal transduction, underscoring their importance as bioactive extracellular organelles containing conserved ciliary signaling proteins.3,4 Members of the transient receptor potential (TRP) channel polycystin-2 (PKD-2) family are found in ciliary EVs of the green algae Chlamydomonas and the nematode Caenorhabditis elegans5,6 and in EVs in the mouse embryonic node and isolated from human urine.7,8 In C. elegans, PKD-2 is expressed in male-specific EV-releasing sensory neurons, which extend ciliary tips to ciliary pore and directly release EVs into the environment.6,9 Males release EVs in a mechanically stimulated manner, regulate EV cargo content in response to mating partners, and deposit PKD-2::GFP-labeled EVs on the vulval cuticle of hermaphrodites during mating.9,10 Combined, our findings suggest that ciliary EV release is a dynamic process. Herein, we identify mechanisms controlling dynamic EV shedding using time-lapse imaging. Cilia can sustain the release of PKD-2-labeled EVs for 2 h. This extended release doesn\'t require neuronal transmission. Instead, ciliary intrinsic mechanisms regulate PKD-2 ciliary membrane replenishment and dynamic EV release. The kinesin-3 motor kinesin-like protein 6 (KLP-6) is necessary for initial and extended EV release, while the transition zone protein NPHP-4 is required only for sustained EV release. The dynamic replenishment of PKD-2 at the ciliary tip is key to sustained EV release. Our study provides a comprehensive portrait of real-time ciliary EV release and mechanisms supporting cilia as proficient EV release platforms.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    全基因组关联研究(GWAS)已经发现超过75个与迟发性阿尔茨海默病(LOAD)风险相关的基因组位点。但是识别潜在的因果基因仍然具有挑战性。来自LOAD患者的诱导多能干细胞(iPSC)衍生的神经元的研究表明存在神经元细胞固有的功能缺陷。这里,我们使用综合系统方法,结合基于多证据的基因作图和基于网络分析的优先排序,在LOAD中搜索了对神经元功能障碍的遗传贡献.秀丽隐杆线虫候选风险基因的系统扰动筛选(C.线虫)揭示了LOAD风险基因直系同源物vha-10(ATP6V1G2)的神经元敲低,cmd-1(CALM3),amph-1(BIN1),Ephx-1(NGEF),pho-5(ACP2)改变短期/中期记忆功能,认知域在负荷进展期间最早受到影响。这些结果突出了LOAD风险基因对进化保守记忆功能的影响,通过神经元内体功能障碍介导,并为进一步的机械审讯确定新的目标。
    Genome-wide association studies (GWASs) have uncovered over 75 genomic loci associated with risk for late-onset Alzheimer\'s disease (LOAD), but identification of the underlying causal genes remains challenging. Studies of induced pluripotent stem cell (iPSC)-derived neurons from LOAD patients have demonstrated the existence of neuronal cell-intrinsic functional defects. Here, we searched for genetic contributions to neuronal dysfunction in LOAD using an integrative systems approach that incorporated multi-evidence-based gene mapping and network-analysis-based prioritization. A systematic perturbation screening of candidate risk genes in Caenorhabditis elegans (C. elegans) revealed that neuronal knockdown of the LOAD risk gene orthologs vha-10 (ATP6V1G2), cmd-1 (CALM3), amph-1 (BIN1), ephx-1 (NGEF), and pho-5 (ACP2) alters short-/intermediate-term memory function, the cognitive domain affected earliest during LOAD progression. These results highlight the impact of LOAD risk genes on evolutionarily conserved memory function, as mediated through neuronal endosomal dysfunction, and identify new targets for further mechanistic interrogation.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    病原体靶向液泡ATP酶(V-ATP酶)以抑制溶酶体酸化或溶酶体融合,导致溶酶体功能障碍.然而,目前尚不清楚细胞是否能检测到功能失调的溶酶体并启动免疫反应。在这项研究中,我们发现,由V-ATPase失活引起的溶酶体功能障碍增强了对细菌感染的先天免疫。我们发现溶酶体V-ATPase与DVE-1相互作用,DVE-1的核定位是诱导线粒体未折叠蛋白反应(UPRmt)的代表。V-ATPase的失活促进DVE-1的核定位,激活UPRmt并诱导下游免疫应答基因。此外,V-ATPase失活赋予的病原体抗性需要dve-1及其下游免疫效应子。有趣的是,动物在vhaRNAi后生长较慢,这表明vha-RNAi诱导的免疫反应通过激活DVE-1消耗最多的能量,这与生长权衡。这项研究揭示了功能失调的溶酶体如何触发免疫反应,强调在免疫防御过程中保存能量的重要性。
    Pathogens target vacuolar ATPase (V-ATPase) to inhibit lysosomal acidification or lysosomal fusion, causing lysosomal dysfunction. However, it remains unknown whether cells can detect dysfunctional lysosomes and initiate an immune response. In this study, we discover that dysfunction of lysosomes caused by inactivation of V-ATPase enhances innate immunity against bacterial infections. We find that lysosomal V-ATPase interacts with DVE-1, whose nuclear localization serves as a proxy for the induction of mitochondrial unfolded protein response (UPRmt). The inactivation of V-ATPase promotes the nuclear localization of DVE-1, activating UPRmt and inducing downstream immune response genes. Furthermore, pathogen resistance conferred by inactivation of V-ATPase requires dve-1 and its downstream immune effectors. Interestingly, animals grow slower after vha RNAi, suggesting that the vha-RNAi-induced immune response costs the most energy through activation of DVE-1, which trades off with growth. This study reveals how dysfunctional lysosomes can trigger an immune response, emphasizing the importance of conserving energy during immune defense.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    生理功能失调赋予偶然的感觉线索以负价,以诱导形成厌恶性联想记忆。外周组织应力如何参与神经调节机制以形成厌恶性记忆尚不清楚。这里,我们发现在线虫C.elegans中,线粒体破坏通过非神经组织中的过氧化物酶体β-氧化基因诱导厌恶记忆,包括pmp-4/超长链脂肪酸转运蛋白,dhs-28/3-羟基酰基辅酶A脱氢酶,和daf-22/3-酮酰基-CoA硫解酶。线粒体应激下过氧化物酶体β-氧化基因的上调需要核激素受体NHR-49。重要的是,过氧化物酶体β-氧化的促进记忆功能与其在信息素产生中的典型作用无关。来自过氧化物酶体靶向NSM的外周信号,在压力下形成记忆的关键神经元,上调5-羟色胺合成并重塑对感觉线索的诱发反应。我们的基因,转录组,和代谢组学方法将过氧化物酶体脂质信号传导作为在厌恶记忆形成中连接外周线粒体应激与中枢5-羟色胺神经调节的关键机制。
    Physiological dysfunction confers negative valence to coincidental sensory cues to induce the formation of aversive associative memory. How peripheral tissue stress engages neuromodulatory mechanisms to form aversive memory is poorly understood. Here, we show that in the nematode C. elegans, mitochondrial disruption induces aversive memory through peroxisomal β-oxidation genes in non-neural tissues, including pmp-4/very-long-chain fatty acid transporter, dhs-28/3-hydroxylacyl-CoA dehydrogenase, and daf-22/3-ketoacyl-CoA thiolase. Upregulation of peroxisomal β-oxidation genes under mitochondrial stress requires the nuclear hormone receptor NHR-49. Importantly, the memory-promoting function of peroxisomal β-oxidation is independent of its canonical role in pheromone production. Peripheral signals derived from the peroxisomes target NSM, a critical neuron for memory formation under stress, to upregulate serotonin synthesis and remodel evoked responses to sensory cues. Our genetic, transcriptomic, and metabolomic approaches establish peroxisomal lipid signaling as a crucial mechanism that connects peripheral mitochondrial stress to central serotonin neuromodulation in aversive memory formation.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    外在饮食和内在发育程序交织在一起。尽管已经对营养如何调节发育进行了广泛的研究,发展计划是否以及如何控制营养反应的时间仍然鲜为人知。这里,我们报告说,一个发展的时机监管机构,BLMP-1/BLIMP1控制对饮食限制(DR)的时间反应。在幼虫发育结束时,BLMP-1被诱导并与DR激活的PHA-4/FOXA相互作用,对营养减少有反应的关键转录因子。通过整合时间和营养信号,DR反应调节许多发育相关基因,包括GSKA-3/GSK3β,在成年期开始时通过BLMP-1-PHA-4。在DR上,在幼虫早期阶段BLMP-1的早熟激活会通过gska-3损害神经元的发育,而在幼虫最后阶段BLMP-1-PHA-4增加gska-3会抑制成年期的WNT信号传导,从而导致DR诱导的长寿。我们的发现揭示了DR反应的时间检查点,可以保护幼虫发育并促进成人健康。
    The extrinsic diet and the intrinsic developmental programs are intertwined. Although extensive research has been conducted on how nutrition regulates development, whether and how developmental programs control the timing of nutritional responses remain barely known. Here, we report that a developmental timing regulator, BLMP-1/BLIMP1, governs the temporal response to dietary restriction (DR). At the end of larval development, BLMP-1 is induced and interacts with DR-activated PHA-4/FOXA, a key transcription factor responding to the reduced nutrition. By integrating temporal and nutritional signaling, the DR response regulates many development-related genes, including gska-3/GSK3β, through BLMP-1-PHA-4 at the onset of adulthood. Upon DR, a precocious activation of BLMP-1 in early larval stages impairs neuronal development through gska-3, whereas the increase of gska-3 by BLMP-1-PHA-4 at the last larval stage suppresses WNT signaling in adulthood for DR-induced longevity. Our findings reveal a temporal checkpoint of the DR response that protects larval development and promotes adult health.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    KCNQ是控制神经元兴奋性的电压门控K通道,在癫痫和自闭症谱系障碍(ASD)中发生突变。KCNQ已经在神经元中进行了广泛的研究,但它们在胶质细胞中的作用是未知的.使用电压,钙,和GABA成像,光遗传学,和行为分析,我们在这里首次展示秀丽隐杆线虫(C.秀丽隐杆线虫),神经胶质KCNQ通道通过调节L型电压门控Ca2通道的功能来介导神经胶质的GABA释放,从而控制神经元的兴奋性。Further,我们表明,人类KCNQ通道在线虫神经胶质细胞中表达时具有相同的作用,强调跨物种的功能保护。最后,我们表明致病性功能丧失和功能获得人类KCNQ2突变以不同的方式改变神经胶质-神经元GABA信号传导,并且KCNQ通道开放剂瑞替加滨具有挽救作用.这项工作通过控制神经胶质中的GABA释放,将神经胶质KCNQ通道确定为神经元兴奋性的关键调节剂。
    KCNQs are voltage-gated K+ channels that control neuronal excitability and are mutated in epilepsy and autism spectrum disorder (ASD). KCNQs have been extensively studied in neurons, but their function in glia is unknown. Using voltage, calcium, and GABA imaging, optogenetics, and behavioral assays, we show here for the first time in Caenorhabditis elegans (C. elegans) that glial KCNQ channels control neuronal excitability by mediating GABA release from glia via regulation of the function of L-type voltage-gated Ca2+ channels. Further, we show that human KCNQ channels have the same role when expressed in nematode glia, underscoring conservation of function across species. Finally, we show that pathogenic loss-of-function and gain-of-function human KCNQ2 mutations alter glia-to-neuron GABA signaling in distinct ways and that the KCNQ channel opener retigabine exerts rescuing effects. This work identifies glial KCNQ channels as key regulators of neuronal excitability via control of GABA release from glia.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

公众号