Body burdens

  • 文章类型: Journal Article
    全球出生率最近呈现下降趋势,暴露于环境污染物已被确定为影响女性生殖健康的潜在因素。邻苯二甲酸酯已广泛用作塑料容器中的增塑剂,儿童玩具,和医疗设备,它们无处不在的存在和内分泌干扰的潜力已经引起了特别的关注。邻苯二甲酸盐暴露与各种不良健康结果有关,包括生殖疾病。鉴于许多邻苯二甲酸酯逐渐被禁止,越来越多的邻苯二甲酸酯替代品变得流行,例如二(异壬基)环己烷-1,2-二羧酸酯(DINCH),己二酸二(2-乙基己基)酯(DEHA),和对苯二甲酸二(2-乙基己基)酯(DEHTP),它们开始产生广泛的环境影响。研究表明,许多邻苯二甲酸酯替代品可能会通过改变发情周期来破坏女性的生殖功能,导致卵巢卵泡闭锁,延长妊娠周期,这引起了人们对其潜在健康风险的日益担忧。在这里,我们总结了邻苯二甲酸酯及其常见替代品在不同女性模型中的作用,影响生殖系统的暴露水平,以及对女性生殖障碍的影响,不良妊娠结局,和后代发育。此外,我们仔细研究邻苯二甲酸盐及其替代品对激素信号的影响,氧化应激,和细胞内信号,以探索对女性生殖健康的作用机制,因为这些化学物质可能通过内分泌干扰直接或间接影响生殖组织。鉴于女性生殖能力下降的全球趋势以及邻苯二甲酸酯及其替代品对女性生殖健康产生负面影响的潜在能力,需要进行更全面的研究,以了解它们对人体的影响及其潜在机制。这些发现可能对改善女性生殖健康,进而减少怀孕期间并发症的数量具有重要作用。
    The global birth rate has recently shown a decreasing trend, and exposure to environmental pollutants has been identified as a potential factor affecting female reproductive health. Phthalates have been widely used as plasticizers in plastic containers, children\'s toys, and medical devices, and their ubiquitous presence and endocrine-disrupting potential have already raised particular concerns. Phthalate exposure has been linked to various adverse health outcomes, including reproductive diseases. Given that many phthalates are gradually being banned, a growing number of phthalate alternatives are becoming popular, such as di(isononyl) cyclohexane-1,2-dicarboxylate (DINCH), di(2-ethylhexyl) adipate (DEHA), and di(2-ethylhexyl) terephthalate (DEHTP), and they are beginning to have a wide range of environmental effects. Studies have shown that many phthalate alternatives may disrupt female reproductive function by altering the estrous cycle, causing ovarian follicular atresia, and prolonging the gestational cycle, which raises growing concerns about their potential health risks. Herein, we summarize the effects of phthalates and their common alternatives in different female models, the exposure levels that influence the reproductive system, and the effects on female reproductive impairment, adverse pregnancy outcomes, and offspring development. Additionally, we scrutinize the effects of phthalates and their alternatives on hormone signaling, oxidative stress, and intracellular signaling to explore the underlying mechanisms of action on female reproductive health, because these chemicals may affect reproductive tissues directly or indirectly through endocrine disruption. Given the declining global trends of female reproductive capacity and the potential ability of phthalates and their alternatives to negatively impact female reproductive health, a more comprehensive study is needed to understand their effects on the human body and their underlying mechanisms. These findings may have an important role in improving female reproductive health and in turn decreasing the number of complications during pregnancy.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    在过去的十年中,评估微塑料(MPs)对鱼类影响的已发表研究的数量有所增加。然而,在现有的研究中,很少有人探索MPs对鱼类生长和繁殖的长期影响,并以μm大小的珠子/微球形式采用MPs。在这项研究中,孵化后6-10天大的medaka(Oryziaslatipes)鱼暴露于50(即1X)和500(即10X)μg的异质大小和不规则形状的原始聚苯乙烯(PS)MP颗粒(200μm范围)/L150天。这些浓度对应于通过饮食施用的247和3087颗粒/L的各自的日平均值。PSMPs的饮食暴露在第50天导致114和440颗粒/克鱼的身体负担,在第100天导致78和173颗粒/克鱼的身体负担。生物统计学分析发现,摄入PSMPs对鱼类的整体生长和发育没有影响。10X组的组织学检查未发现g或消化道的变化。观察到其他器官的轻度改变,包括腹膜腔中的液体物质增加,肾小球和肾小管改变,甲状腺滤泡直径和滤泡上皮细胞厚度的差别。生殖阶段的最初几天显示了与MP相关的妊娠雌性数量的差异,繁殖力,和受精率。总的来说,这些值在随后的日子里恢复到正常的比率。PSMPs暴露对后代成功没有显着影响。本研究中使用的150天PSMPs饮食暴露提供了组织学影响和繁殖延迟的线索。然而,它似乎并没有损害整体增长/繁荣和持续繁殖。
    The number of published studies evaluating the effects of microplastics (MPs) in fish has increased in the last decade. However, of the available studies, few have explored the long-term effects of MPs on fish growth and reproduction and have resorted to MPs in the form of μm-sized beads/microspheres. In this study, 6-10 day-old post-hatch medaka (Oryzias latipes) fish were exposed to 50 (i.e. 1X) and 500 (i.e. 10X) μg of heterogeneously sized and irregularly shaped virgin polystyrene (PS) MP particles (200-μm range)/L for 150 days. These concentrations corresponded to respective daily mean values of 247 and 3087 particles/L administered through the diet. The PS MPs dietary exposure resulted in body burdens of 114 and 440 particles/g fish on day 50, and of 78 and 173 particles/g fish on day 100 since the respective exposures to the 1X and the 10X treatments started. The biometric analyses found no incidence of PS MPs ingestion on overall fish growth and development. The histological survey in the 10X group did not reveal alterations in gills or in the digestive tract. Mild alterations in other organs were seen and included increased fluid material in the peritoneal cavity, glomerular and tubular alterations in kidneys, and differences in the diameter of the thyroid follicles and thickness of the follicular epithelial cells. The initial days of the reproductive phase revealed MP-related differences in the number of gravid females, fecundity, and fertilization rates. Overall, these values reverted to normal rates throughout the succeeding days. No significant effects of PS MPs exposure were evidenced on offspring success. The 150-day PS MPs dietary exposure used in this study provided clues of histological effects and a reproduction delay. However, it did not seem to compromise overall growth/thriving and the ongoing reproduction.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    The U.S. Department of the Interior recently included uranium (U) on a list of mineral commodities that are considered critical to economic and national security. The uses of U for commercial and residential energy production, defense applications, medical device technologies, and energy generation for space vehicles and satellites are known, but the environmental impacts of uranium extraction are not always well quantified. We conducted a screening-level ecological risk analysis based on exposure to mining-related elements via diets and incidental soil ingestion for terrestrial biota to provide context to chemical characterization and exposures at breccia pipe U mines in northern Arizona. Relative risks, calculated as hazard quotients (HQs), were generally low for all biological receptor models. Our models screened for risk to omnivores and insectivores (HQs>1) but not herbivores and carnivores. Uranium was not the driver of ecological risk; arsenic, cadmium, copper, and zinc were of concern for biota consuming ground-dwelling invertebrates. Invertebrate species composition should be considered when applying these models to other mining locations or future sampling at the breccia pipe mine sites. Dietary concentration thresholds (DCTs) were also calculated to understand food concentrations that may lead to ecological risk. The DCTs indicated that critical concentrations were not approached in our model scenarios, as evident in the very low HQs for most models. The DCTs may be used by natural resource and land managers as well as mine operators to screen or monitor for potential risk to terrestrial receptors as mine sites are developed and remediated in the future.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

  • 文章类型: Journal Article
    The effects of breccia pipe uranium mining in the Grand Canyon watershed (Arizona) on ecological and cultural resources are largely unknown. We characterized the exposure of biota to uranium and co-occurring ore body elements during active ore production and at a site where ore production had recently concluded. Our results indicate that biota have taken up uranium and other elements (e.g., arsenic, cadmium, copper, molybdenum, uranium) from exposure to ore and surficial contamination, like blowing dust. Results indicate the potential for prolonged exposure to elements and radionuclides upon conclusion of active ore production. Mean radium-226 in deer mice was up to 4 times greater than uranium-234 and uranium-238 in those same samples; this may indicate a potential for, but does not necessarily imply, radium-226 toxicity. Soil screening benchmarks for uranium and molybdenum and other toxicity thresholds for arsenic, copper, selenium, uranium (e.g., growth effects) were exceeded in vegetation, invertebrates, and rodents (Peromyscus spp., Thomomys bottae, Tamias dorsalis, Dipodomys deserti). However, the prevalence and severity of microscopic lesions in rodent tissues (as direct evidence of biological effects of uptake and exposure) could not be definitively linked to mining. Our data indicate that land managers might consider factors like species, seasonal changes in environmental concentrations, and bioavailability, when determining mine permitting and remediation in the Grand Canyon watershed. Ultimately, our results will be useful for site-specific ecological risk analysis and can support future decisions regarding the mineral extraction withdrawal in the Grand Canyon watershed and elsewhere.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

  • 文章类型: Journal Article
    Metals are widely used in modern society harming the environment; their toxicity cause environmental adverse effects to many organisms including zooplankton. This contribution employed: (a) acute and chronic toxicity tests, (b) epifluorescence image analysis, and (c) atomic absorption techniques, to analyze toxicity of four trace (copper, iron, nickel, and zinc), and one non-trace metals (mercury) on the freshwater rotifer Euchlanis dilatata. This work integrated results of Bioconcentration Factors (BCF\'s), sites of entry and accumulation and to determine mechanisms of uptake and toxicity of these five metals of the freshwater rotifer Euchlanis dilatata. This integral analysis enhanced our understanding of knowledge on: (a) the toxicity mechanisms, (b) sites of metal entry and concentration inside the rotifer, (c) bioconcentration and body burdens. As expected, Hg the non-trace metal used here, was the most toxic. Our results suggest that the toxicity is ameliorated in the rotifer by selecting feeding avoiding the most toxic particles and reducing adverse effects on reproduction, until mortality per se reduces reproduction. The chronic effect on ingestion rate was quite sensitive for all metals whereas reproduction was slightly affected. The combination of acute and chronic tests and determination of BCF\'s for each metal allowed calculation of the acute and chronic body burdens. Body burdens again confirmed that mercury was the most toxic metal of the five employed here.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

  • 文章类型: Journal Article
    The Fort McMurray region in northeastern Alberta (Canada) is rich in natural sources of polycyclic aromatic compounds (PACs) from exposed bitumen beds; anthropogenic sources are being released with increased oil sands industry expansion. Here we report on investigations of PACs (47 compounds) in three species of forage fish collected during the 2012-2013 Joint Oil Sands Monitoring Program (JOSMP) fish health investigations and compare results with PAC data for sediment and water collected under JOSMP and earlier programs. PAC concentrations in sediments varied three orders in magnitude and were highest at downstream tributary mouths, which flowed through the exposed McMurray Formation, and along reaches of the Athabasca River where the formation was exposed. PAC concentrations in water were less variable but with higher concentrations near exposed bitumen beds. Forage fish exhibited the weakest spatial gradients in ΣPACs concentration, which averaged 102 ± 32 ng/g in trout-perch from the Athabasca River, 125 ± 22 ng/g in lake chub from the Ells River, and 278 ± 267 ng/g in slimy sculpin from the Steepbank, Firebag, and Dunkirk Rivers. Low-molecular weight compounds, particularly naphthalenes and fluorenes, dominated fish PACs. Phenanthrenes occurred in greater percent composition in fish caught in areas where PAC concentrations in sediments were higher due to the proximity of bitumen sources than in other areas. Dibenzothiophene, a major component of bitumen PAC, was a minor component of fish ΣPACs. Forage fish PAC concentrations were below fish consumption guidelines established by the European Commission (2011) and for the reopening of the commercial fisheries closed by the Deepwater Horizon oil spill. PAC concentrations in forage fish were similar to concentrations observed in many other studies (fish market surveys, estuaries, and marine waters) and lower than in fish sampled from highly impacted areas (near refineries, harbors, and other industrialized areas).
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

  • 文章类型: Journal Article
    High-grade U ore deposits are in various stages of exploitation across the Grand Canyon watershed, yet the effects of U mining on ecological and cultural resources are largely unknown. We characterized the concentrations of Al, As, Bi, Cd, Co, Cu, Fe, Pb, Hg, Mo, Ni, Se, Ag, Tl, Th, U, and Zn, gross alpha and beta activities, and U and Th radioisotopes in soil, vegetation (Hesperostipa comata, Artemisia tridentata, Tamarix chinensis), and rodents (Peromyscus maniculatus, P. boylii) to waste material at the Kanab North mine, a mine with decades-long surficial contamination, and compared the concentrations (P < 0.01) to those at a premining site (Canyon Mine). Rodent tissues were also analyzed for radium-226 and microscopic lesions. Radioactivities and some elemental concentrations (e.g., Co, Pb, U) were greater in the Kanab North mine biological samples than in Canyon Mine biota, indicating a mining-related elemental signature. Mean rodent Ra-226 (111 Bq/kg dry weight [dry wt]) was 3 times greater than expected, indicating radioactive disequilibrium. Multiple soil sample U concentrations exceeded a screening benchmark, growth inhibition thresholds for sensitive plants, and an EC20 for a soil arthropod. Lesions associated with metals exposure were also observed more frequently in rodents at Kanab North than those at Canyon Mine but could not be definitively attributed to U mining. Our results indicate that Kanab North biota have taken up U mining-related elements owing to chronic exposure to surficial contamination. However, no literature-based effects thresholds for small rodents were exceeded, and only a few soil and vegetation thresholds for sensitive species were exceeded; therefore, adverse effects to biota from U mining-related elements at Kanab North are unlikely despite chronic exposure. Integr Environ Assess Manag 2019;15:112-125. Published 2018. This article is a US Government work and is in the public domain in the USA.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

  • 文章类型: Journal Article
    Perfluorooctane sulfonate (PFOS) found extensive use for over 60 years up until its restriction in the early 2000s, culminating in its listing under the Stockholm Convention on Persistent Organic Pollutants (POPs) in 2009. Efforts to minimise human body burdens are hindered by uncertainty over their precise origins. While diet appears the principal source for the majority of western populations (with other pathways like dust ingestion, drinking water and inhalation also important contributors); the role played by exposure to PFOS-precursor compounds followed by in vivo metabolism to PFOS as the ultimate highly stable end-product is unclear. Such PFOS-precursor compounds include perfluorooctane sulfonamide derivates, e.g., perfluorooctane sulfonamides (FOSAs) and sulfonamidoethanols (FOSEs). Understanding the indirect contribution of such precursors to human body burdens of PFOS is important as a significant contribution from this pathway would render the margin of safety between the current exposure limits and estimates of external exposure to PFOS alone, narrower than hitherto appreciated. Estimates derived from mathematical modelling studies, put the contribution of so-called \"precursor exposure\" at between 10% and 40% of total PFOS body burdens. However, there are substantial uncertainties associated with such approaches. This paper reviews current understanding of human exposure to PFOS, with particular reference to recent research highlighting the potential of environmental forensics approaches based on the relative abundance and chiral signatures of branched chain PFOS isomers to provide definitive insights into the role played by \"precursor exposure\".
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    Around the world humans use products that contain phthalates, and human exposure to certain of these phthalates has been associated with various adverse health effects. The aim of the present study has been to determine the concentrations of the metabolites of diethyl phthalate (DEP), di(n-butyl) phthalate (DnBP), di(iso-butyl) phthalate (DiBP), butyl benzyl phthalate (BBzP) and di(2-ethylhexyl) phthalate (DEHP) in urine samples from 441 Danish children (3-6 years old). These children were subjects in the Danish Indoor Environment and Children\'s Health study. As part of each child\'s medical examination, a sample from his or her first morning urination was collected. These samples were subsequently analyzed for metabolites of the targeted phthalates. The measured concentrations of each metabolite were approximately log-normally distributed, and the metabolite concentrations significantly correlated with one another. Additionally, the mass fractions of DEP, DnBP, DiBP and BBzP in dust collected from the children\'s bedrooms and daycare centers significantly correlated with the concentrations of these phthalates\' metabolites (monoethyl phthalate (MEP), mono-n-butyl phthalate (MnBP), mono-isobutyl phthalate (MiBP) and monobenzyl phthalate (MBzP), respectively) in the children\'s urine. Such correlations indicate that indoor exposures meaningfully contributed to the Danish children\'s intake of DEP, DnBP, DiBP and BBzP. This was not the case for DEHP. The urine concentrations of the phthalate metabolites measured in the present study were remarkably similar to those measured in urine samples from children living in countries distributed over four continents. These similarities reflect the globalization of children\'s exposure to phthalate containing products.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

公众号