Biophysics and Computational Biology

  • 文章类型: Journal Article
    FrancisCrick的卷曲螺旋几何结构的全局参数化对指导新蛋白质结构和功能的设计具有广泛的有用性。然而,由类似的β桶结构全局参数化指导的设计不太成功,可能是由于与理想的β桶几何形状要求的偏差,以保持广泛的股间氢键键合而不引入相当大的主链应变。相反,β桶和其他蛋白质折叠已经被设计的二维结构蓝图的指导;虽然这种方法已经成功地产生了新的荧光蛋白,跨膜纳米孔,和其他结构,它需要相当的专业知识,只提供对全球桶形的间接控制。在这里,我们表明,通过利用基于RoseTTAFold的修补和扩散设计方法中隐含的丰富的序列-结构关系,可以超越卷曲线圈,对全局参数表示提供的形状和结构的简单性和控制进行推广。从参数化生成的理想化桶骨架开始,RFjoint油漆和RFdiffusion都很容易结合正确折叠所需的骨架不规则性,而与理想的桶形几何形状的偏差最小。我们表明,对于广泛的全球β表参数化的β桶,这些方法获得了很高的计算机模拟和实验成功率,新的β桶拓扑结构的X射线晶体结构证实了原子精度,并且从头设计了12、14和16个链的跨膜纳米孔,其电导率范围为200至500pS。通过将参数生成的简单性和控制性与基于深度学习的蛋白质设计方法的高成功率相结合,我们的方法设计了整体形状赋予功能的蛋白质,如β桶纳米孔,更精确地可指定和可访问。
    Francis Crick\'s global parameterization of coiled coil geometry has been widely useful for guiding design of new protein structures and functions. However, design guided by similar global parameterization of beta barrel structures has been less successful, likely due to the deviations required from ideal beta barrel geometry to maintain extensive inter-strand hydrogen bonding without introducing considerable backbone strain. Instead, beta barrels and other protein folds have been designed guided by 2D structural blueprints; while this approach has successfully generated new fluorescent proteins, transmembrane nanopores, and other structures, it requires considerable expert knowledge and provides only indirect control over the global barrel shape. Here we show that the simplicity and control over shape and structure provided by global parametric representations can be generalized beyond coiled coils by taking advantage of the rich sequence-structure relationships implicit in RoseTTAFold based inpainting and diffusion design methods. Starting from parametrically generated idealized barrel backbones, both RFjoint inpainting and RFdiffusion readily incorporate the backbone irregularities necessary for proper folding with minimal deviation from the idealized barrel geometries. We show that for beta barrels across a broad range of global beta sheet parameterizations, these methods achieve high in silico and experimental success rates, with atomic accuracy confirmed by an X-ray crystal structure of a novel beta barrel topology, and de novo designed 12, 14, and 16 stranded transmembrane nanopores with conductances ranging from 200 to 500 pS. By combining the simplicity and control of parametric generation with the high success rates of deep learning based protein design methods, our approach makes the design of proteins where global shape confers function, such as beta barrel nanopores, more precisely specifiable and accessible.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    液-液相分离产生的生物分子冷凝物有助于不同的细胞过程,如基因表达。将客户分子分成缩合物对调节缩合物的组成和功能是关键的。以前的研究表明,客户端大小限制了分区,从缩合物中排除>5nm的葡聚糖。这里,我们问是否更大的颗粒,如大分子复合物,可以根据颗粒-冷凝物相互作用分成冷凝物。我们试图发现生物物理原理,这些原理使用具有定制表面化学的聚合物纳米颗粒作为大分子复合物的模型来控制凝结物中的颗粒包含或排除。用聚乙二醇(PEG)涂覆的颗粒不分配到缩合物中。接下来,我们利用PEG化的颗粒作为惰性平台,我们将特定的粘合剂部分缀合到该惰性平台。用生物素官能化的颗粒分配到含有链霉亲和素的缩合物中,由高亲和力生物素-链霉亲和素结合驱动。寡核苷酸修饰的颗粒表现出不同程度的分配成缩合物,取决于冷凝物的组成。通过改变盐浓度来调整寡核苷酸包被的颗粒的分配,寡核苷酸长度,和寡核苷酸表面密度。值得注意的是,具有不同表面化学性质的珠子正交分配为不混溶的冷凝物。根据我们的实验,我们得出的结论是,任意大的颗粒可以可控地分配到生物分子缩合物,给予足够强的缩合物-颗粒相互作用,我们的粗粒度分子动力学模拟和理论也支持了这一结论。这些发现可以提供对各种细胞过程是如何实现的基础上,大客户分配到生物分子缩合物的见解,以及为开发选择性靶向疾病相关生物分子缩合物的药物递送系统提供设计原则。
    生物分子缩合物是选择性募集或排除客户分子的亚细胞区室,即使冷凝物缺乏封闭的膜。许多生化重建实验已经研究了无膜细胞器控制分配的机制,模拟细胞如何时空招募成分进入凝聚体以调节细胞功能。一个悬而未决的问题是分区是否受到客户端大小的严格限制。在这项工作中,我们设计了具有各种尺寸和表面功能的纳米颗粒,并测量了这些变量如何决定分配。我们观察到大颗粒的受控和正交分配为几种冷凝类型,由强烈的粒子-冷凝物相互作用驱动。分子模拟概括了关键结果。我们的工作推进了对凝析油成分如何调节的理解,我们的纳米粒子工具箱也可能激发药物输送的平台。
    Biomolecular condensates arising from liquid-liquid phase separation contribute to diverse cellular processes, such as gene expression. Partitioning of client molecules into condensates is critical to regulating the composition and function of condensates. Previous studies suggest that client size limits partitioning, with dextrans >5 nm excluded from condensates. Here, we asked whether larger particles, such as macromolecular complexes, can partition into condensates based on particle-condensate interactions. We sought to discover the biophysical principles that govern particle inclusion in or exclusion from condensates using polymer nanoparticles with tailored surface chemistries as models of macromolecular complexes. Particles coated with polyethylene glycol (PEG) did not partition into condensates. We next leveraged the PEGylated particles as an inert platform to which we conjugated specific adhesive moieties. Particles functionalized with biotin partitioned into condensates containing streptavidin, driven by high-affinity biotin-streptavidin binding. Oligonucleotide-decorated particles exhibited varying degrees of partitioning into condensates, depending on condensate composition. Partitioning of oligonucleotide-coated particles was tuned by altering salt concentration, oligonucleotide length, and oligonucleotide surface density. Remarkably, beads with distinct surface chemistries partitioned orthogonally into immiscible condensates. Based on our experiments, we conclude that arbitrarily large particles can controllably partition into biomolecular condensates given sufficiently strong condensate-particle interactions, a conclusion also supported by our coarse-grained molecular dynamics simulations and theory. These findings may provide insights into how various cellular processes are achieved based on partitioning of large clients into biomolecular condensates, as well as offer design principles for the development of drug delivery systems that selectively target disease-related biomolecular condensates.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    尽管最近在表征细胞迁移力学方面取得了实验进展,我们对控制细胞快速运动的机制的理解仍然有限。为了有效地限制肿瘤生长,抗肿瘤T细胞需要快速迁移以发现和杀死癌细胞。为了研究细胞速度的上限,我们开发了一种新的基于气泡的细胞运动的混合随机平均场模型。我们首先检查了无粘附的基于气泡的迁移的潜力,并表明细胞在没有基于粘附的力的情况下迁移效率低下,即,细胞游泳。虽然细胞在粘弹性介质中游泳不需要皮质收缩性振荡,高到低的皮质收缩性振荡对于细胞在粘性介质中游泳是必需的。这涉及到高皮质收缩性阶段与多个气泡成核事件,随后是低皮质张力下的细胞内压力累积恢复阶段,导致适度的净细胞运动。然而,我们的模型表明,细胞可以采用基于气泡和粘附的混合迁移机制来实现快速细胞运动,并确定最佳条件.该模型提供了快速单细胞迁移的动量保持机制,并确定了作为工程T细胞疗法的设计标准的因素,以改善机械复杂环境中的运动。
    Despite recent experimental progress in characterizing cell migration mechanics, our understanding of the mechanisms governing rapid cell movement remains limited. To effectively limit tumor growth, antitumoral T cells need to rapidly migrate to find and kill cancer cells. To investigate the upper limits of cell speed, we developed a new hybrid stochastic-mean field model of bleb-based cell motility. We first examined the potential for adhesion-free bleb-based migration and show that cells migrate inefficiently in the absence of adhesion-based forces, i.e., cell swimming. While no cortical contractility oscillations are needed for cells to swim in viscoelastic media, high-to-low cortical contractility oscillations are necessary for cell swimming in viscous media. This involves a high cortical contractility phase with multiple bleb nucleation events, followed by an intracellular pressure buildup recovery phase at low cortical tensions, resulting in modest net cell motion. However, our model suggests that cells can employ a hybrid bleb- and adhesion-based migration mechanism for rapid cell motility and identifies conditions for optimality. The model provides a momentum-conserving mechanism underlying rapid single-cell migration and identifies factors as design criteria for engineering T cell therapies to improve movement in mechanically complex environments.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Preprint
    家族性扩张型心肌病(DCM)通常由参与多种细胞过程的基因中的常染色体显性点突变引起。包括肌节收缩。虽然患者研究已经定义了DCM的遗传景观,遗传学目前不用于病人护理,患者接受类似的治疗,无论潜在的突变。有人提出,基于潜在突变的分子机制的精准医学方法可以改善结果;然而,由于难以将基因型和表型联系起来,然后利用这些信息来确定治疗方法,因此实现这种方法具有挑战性。这里,我们使用多尺度实验和计算方法来测试是否可以利用分子机制知识来连接基因型,表型,和肌钙蛋白TDCM突变的药物反应,删除K210。以前,我们证明了在分子尺度上,这种突变减少了细丝的激活。这里,我们使用这种分子缺陷的计算模型来预测突变体会降低细胞和组织的收缩性,我们在人心肌细胞和工程心脏组织中验证了这一预测。然后,我们使用我们对分子机制的知识来计算模拟可以激活细丝的小分子的影响。我们通过实验证明,该模型正确地预测了小分子可以以舒张功能为代价部分挽救收缩功能障碍。一起来看,我们的结果证明了如何利用分子机制来连接基因型和表型,并激发策略来优化DCM的基于机制的治疗方法.
    扩张型心肌病(DCM),心力衰竭的主要原因,其特征是心脏无法在正常的充盈压力下灌注身体。DCM有多种原因,包括肌节蛋白的点突变,但是大多数患者接受类似的治疗,无论DCM的根本原因是什么。许多患者仍然得不到目前的治疗,需要新的方法。这里,我们使用多尺度实验和计算方法来证明如何利用分子机制知识来准确预测患者特异性突变的影响和对推定疗法的反应。我们的方法为DCM的精准医学方法奠定了基础。
    Familial dilated cardiomyopathy (DCM) is frequently caused by autosomal dominant point mutations in genes involved in diverse cellular processes, including sarcomeric contraction. While patient studies have defined the genetic landscape of DCM, genetics are not currently used in patient care, and patients receive similar treatments regardless of the underlying mutation. It has been suggested that a precision medicine approach based on the molecular mechanism of the underlying mutation could improve outcomes; however, realizing this approach has been challenging due to difficulties linking genotype and phenotype and then leveraging this information to identify therapeutic approaches. Here, we used multiscale experimental and computational approaches to test whether knowledge of molecular mechanism could be harnessed to connect genotype, phenotype, and drug response for a DCM mutation in troponin T, deletion of K210. Previously, we showed that at the molecular scale, the mutation reduces thin filament activation. Here, we used computational modeling of this molecular defect to predict that the mutant will reduce cellular and tissue contractility, and we validated this prediction in human cardiomyocytes and engineered heart tissues. We then used our knowledge of molecular mechanism to computationally model the effects of a small molecule that can activate the thin filament. We demonstrate experimentally that the modeling correctly predicts that the small molecule can partially rescue systolic dysfunction at the expense of diastolic function. Taken together, our results demonstrate how molecular mechanism can be harnessed to connect genotype and phenotype and inspire strategies to optimize mechanism-based therapeutics for DCM.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Preprint
    骨骼肌肌动蛋白(ACTA1)突变是骨骼肌病的普遍原因,与ACTA1在骨骼肌中的高表达一致。已经报道了与合并的心脏和骨骼肌病相关的ACTA1中罕见的从头突变,但ACTA1只占心肌细胞总肌动蛋白池的20%,使其在心肌病中的作用引起争议。在这里,我们展示了在心肌细胞中低水平表达的肌动蛋白亚型的突变如何通过关注独特的ACTA1突变来引起心肌病。R256H.我们先前在患有扩张型心肌病(DCM)的多个家族成员中发现了这种突变,收缩功能降低,没有临床骨骼肌病。使用一系列多尺度生物物理工具,我们显示R256H在分子尺度和人心肌细胞中对ACTA1功能具有有效的功能作用。重要的是,我们证明了R256H以占主导地位的方式起作用,在细丝中掺入少量的突变蛋白足以破坏分子的收缩性,这种作用取决于肌钙蛋白和原肌球蛋白的存在。为了理解这种监管变化的结构基础,我们使用Cryo-EM解析了R256H细丝的结构,我们看到肌动蛋白结构的改变有可能破坏与原肌球蛋白的相互作用。最后,我们显示ACTA1R256H/+人诱导多能干细胞心肌细胞表现出收缩性降低和肌节解体。一起来看,我们证明R256H对ACTA1功能有多种作用,足以导致收缩力降低,并在ACTA1R256H与临床心肌病之间建立了可能的因果关系.
    众所周知,骨骼肌肌动蛋白突变会导致骨骼肌病,但是它们在心肌病中的作用一直存在争议,因为骨骼肌肌动蛋白在心脏中仅以适度的水平表达。这里,我们证明了骨骼肌肌动蛋白突变在原子和分子尺度上强烈导致肌动蛋白功能的多种缺陷,它以占主导地位的方式运作,导致心肌细胞收缩缺陷。我们的结果确定了骨骼肌肌动蛋白突变如何导致心肌细胞功能障碍,并为未来研究骨骼肌肌动蛋白在心肌病中的作用奠定了基础。
    Skeletal muscle actin (ACTA1) mutations are a prevalent cause of skeletal myopathies consistent with ACTA1\'s high expression in skeletal muscle. Rare de novo mutations in ACTA1 associated with combined cardiac and skeletal myopathies have been reported, but ACTA1 represents only ~20% of the total actin pool in cardiomyocytes, making its role in cardiomyopathy controversial. Here we demonstrate how a mutation in an actin isoform expressed at low levels in cardiomyocytes can cause cardiomyopathy by focusing on a unique ACTA1 mutation, R256H. We previously identified this mutation in multiple family members with dilated cardiomyopathy (DCM), who had reduced systolic function without clinical skeletal myopathy. Using a battery of multiscale biophysical tools, we show that R256H has potent functional effects on ACTA1 function at the molecular scale and in human cardiomyocytes. Importantly, we demonstrate that R256H acts in a dominant manner, where the incorporation of small amounts of mutant protein into thin filaments is sufficient to disrupt molecular contractility, and that this effect is dependent on the presence of troponin and tropomyosin. To understand the structural basis of this change in regulation, we resolved a structure of R256H filaments using Cryo-EM, and we see alterations in actin\'s structure that have the potential to disrupt interactions with tropomyosin. Finally, we show that ACTA1R256H/+ human induced pluripotent stem cell cardiomyocytes demonstrate reduced contractility and sarcomeric disorganization. Taken together, we demonstrate that R256H has multiple effects on ACTA1 function that are sufficient to cause reduced contractility and establish a likely causative relationship between ACTA1 R256H and clinical cardiomyopathy.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Preprint
    了解细胞衰老过程的机制对于试图延长生物体寿命和研究与年龄相关的退行性疾病至关重要。酵母细胞通过出芽分裂,为研究细胞衰老提供了经典的生物学模型。凭借他们强大的遗传学,在动物中也发现了相对较短的寿命和完善的信号通路,酵母细胞提供了对衰老过程的宝贵见解。最近的实验表明,酵母中存在两种衰老模式,其特征是核仁和线粒体下降,分别。在这项研究中,通过分析实验数据表明,进化成这两种衰老模式的细胞在年轻时表现不同。虽然芽在两种模式下线性生长,在整个生命周期中始终产生球形芽的细胞在年轻时控制芽的大小和生长速率方面表现出更大的功效。建立了三维化学力学模型,并用于建议和测试衰老过程中芽形态发生的假设机制。实验校准的模拟表明,在出芽的早期阶段,通过在极化的Cdc42信号的引导下在芽尖局部插入新材料,可以产生一种老化模式下的管状芽形状。此外,在后期可以稳定管状芽的长宽比,正如在实验中观察到的,通过减少新细胞表面材料的插入或极化位点的扩展。因此,模型模拟表明,由于酵母和其他细胞类型的细胞老化,新细胞表面材料插入或化学信号极化的维持可能会减弱。
    老化酵母表现出两种具有不同芽形状的模式。实验数据分析表明,在球形出芽模式下老化的细胞比在管状出芽模式下老化的细胞更可靠地控制生长速率和芽大小。开发了一个计算模型,并与实验结合使用,以测试衰老细胞中不同类型出芽的假设机制。模型模拟表明,局部生长足以产生管状出芽,并且可以通过调节极化位点扩大或新细胞表面材料插入下降的化学信号来稳定其纵横比。提出的衰老酵母形态变化的机制可以存在于其他细胞类型中。
    Understanding the mechanisms of cellular aging processes is crucial for attempting to extend organismal lifespan and for studying age-related degenerative diseases. Yeast cells divide through budding, providing a classical biological model for studying cellular aging. With their powerful genetics, relatively short lifespan and well-established signaling pathways also found in animals, yeast cells offer valuable insights into the aging process. Recent experiments suggested the existence of two aging modes in yeast characterized by nucleolar and mitochondrial declines, respectively. In this study, by analyzing experimental data it was shown that cells evolving into those two aging modes behave differently when they are young. While buds grow linearly in both modes, cells that consistently generate spherical buds throughout their lifespan demonstrate greater efficacy in controlling bud size and growth rate at young ages. A three-dimensional chemical-mechanical model was developed and used to suggest and test hypothesized mechanisms of bud morphogenesis during aging. Experimentally calibrated simulations showed that tubular bud shape in one aging mode could be generated by locally inserting new materials at the bud tip guided by the polarized Cdc42 signal during the early stage of budding. Furthermore, the aspect ratio of the tubular bud could be stabilized during the late stage, as observed in experiments, through a reduction on the new cell surface material insertion or an expansion of the polarization site. Thus model simulations suggest the maintenance of new cell surface material insertion or chemical signal polarization could be weakened due to cellular aging in yeast and other cell types.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Preprint
    为了设计安全,选择性,和有效的新疗法,必须对药物靶标的结构和功能有深入的了解。最难以解决的问题之一是跨膜离子通道蛋白的离散构象状态的解析。一个例子是KV11.1(hERG),包括初级心脏复极化电流,IKR.hERG是一种臭名昭著的抗靶点药物,对所有有希望的药物进行筛选以确定心律失常的可能性。与hERG失活状态的药物相互作用与心律失常风险升高有关,药物可能会在通道关闭过程中被困。然而,多个构象状态的结构细节仍然难以捉摸。这里,我们引导AlphaFold2预测可能的hERG失活和闭合构象,获得的结果与无数可用的实验数据一致。药物对接模拟表明hERG状态特异性药物相互作用与实验结果吻合良好,揭示了大多数药物在失活状态下更有效地结合,并被困在封闭状态。分子动力学模拟证明了与早期研究一致的离子传导。最后,我们通过分析封闭的相互作用网络,确定了状态转变的关键分子决定因素,打开,和失活状态与早期的诱变研究一致。这里,我们展示了AlphaFold2作为一种新的方法来预测离散的蛋白质构象和从结构到功能的新的连接的一个容易推广的应用。
    To design safe, selective, and effective new therapies, there must be a deep understanding of the structure and function of the drug target. One of the most difficult problems to solve has been resolution of discrete conformational states of transmembrane ion channel proteins. An example is KV11.1 (hERG), comprising the primary cardiac repolarizing current, IKr. hERG is a notorious drug anti-target against which all promising drugs are screened to determine potential for arrhythmia. Drug interactions with the hERG inactivated state are linked to elevated arrhythmia risk, and drugs may become trapped during channel closure. However, the structural details of multiple conformational states have remained elusive. Here, we guided AlphaFold2 to predict plausible hERG inactivated and closed conformations, obtaining results consistent with myriad available experimental data. Drug docking simulations demonstrated hERG state-specific drug interactions aligning well with experimental results, revealing that most drugs bind more effectively in the inactivated state and are trapped in the closed state. Molecular dynamics simulations demonstrated ion conduction that aligned with earlier studies. Finally, we identified key molecular determinants of state transitions by analyzing interaction networks across closed, open, and inactivated states in agreement with earlier mutagenesis studies. Here, we demonstrate a readily generalizable application of AlphaFold2 as a novel method to predict discrete protein conformations and novel linkages from structure to function.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Preprint
    在哺乳动物细胞中,粘附蛋白复合物被认为在间期沿染色质易位,通过称为活性环挤出的过程形成动态环。染色体构象捕获和成像实验表明,染色质采用紧密结构,染色体之间和染色体切片之间的相互渗透有限。我们开发了一种理论,证明主动环挤出会导致染色质的表观分形维数在30千碱基对(kbp)的轮廓长度上在2到4之间交叉。异常高的分形维数D=4是由于挤出环在主动挤出过程中无法完全松弛。较长等高线长度尺度上的压实在拓扑关联域(TAD)内延伸,促进远端元件的基因调控。挤出诱导的压实会隔离TAD,使TAD之间的重叠减少到35%以下,并使染色质的缠结链增加多达50倍至几个兆碱基对。此外,主动环挤压将粘附素运动与先前挤压粘附素形成的染色质构象相耦合,并导致在超过数十分钟的滞后时间(Δt)内染色质基因座的均方位移与Δt1/3成正比。我们通过混合分子动力学-蒙特卡罗模拟验证了我们的结果,并表明我们的理论与实验数据一致。这项工作为相间染色质的紧密组织提供了理论依据,解释TAD分离和染色质缠结抑制的物理原因,这有助于有效的基因调控。
    结论:在间期,细胞必须压缩染色质,以使基因启动子及其调控元件经常在空间中相互接触。然而,细胞还需要将启动子与其他基因组切片中的调控元件隔离。利用高分子物理理论和计算机模拟,我们建议粘附素蛋白复合物主动将染色质挤出到拓扑相关域(TAD)中,分形维数异常高,为D≈4,同时抑制了不同TAD之间的空间重叠。我们的模型表明,与染色质环的缓慢松弛相比,主动环挤出的快速动力学保持了致密的染色质组织。这项工作提供了一个物理框架,解释了粘附素如何有助于有效的转录调控。
    In mammalian cells, the cohesin protein complex is believed to translocate along chromatin during interphase to form dynamic loops through a process called active loop extrusion. Chromosome conformation capture and imaging experiments have suggested that chromatin adopts a compact structure with limited interpenetration between chromosomes and between chromosomal sections. We developed a theory demonstrating that active loop extrusion causes the apparent fractal dimension of chromatin to cross over between two and four at contour lengths on the order of 30 kilo-base pairs (kbp). The anomalously high fractal dimension D=4 is due to the inability of extruded loops to fully relax during active extrusion. Compaction on longer contour length scales extends within topologically associated domains (TADs), facilitating gene regulation by distal elements. Extrusion-induced compaction segregates TADs such that overlaps between TADs are reduced to less than 35% and increases the entanglement strand of chromatin by up to a factor of 50 to several Mega-base pairs. Furthermore, active loop extrusion couples cohesin motion to chromatin conformations formed by previously extruding cohesins and causes the mean square displacement of chromatin loci during lag times (Δt) longer than tens of minutes to be proportional to Δt1/3. We validate our results with hybrid molecular dynamics - Monte Carlo simulations and show that our theory is consistent with experimental data. This work provides a theoretical basis for the compact organization of interphase chromatin, explaining the physical reason for TAD segregation and suppression of chromatin entanglements which contribute to efficient gene regulation.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Preprint
    冠状病毒基因组在茎环5(SL5)内隔离其起始密码子,一个结构化的,5\'基因组RNA元件。在大多数α-和β-冠状病毒中,预测SL5的二级结构包含螺旋茎的四向连接,其中一些用UUYYGU六角形封顶。这里,使用低温电子显微镜(cryo-EM)和具有生物化学确定的二级结构的计算模型,我们展示了来自6种冠状病毒的SL5的三维结构.β-冠状病毒SARS-CoV-2的SL5结构域,分辨率为4.7µ。呈现出T形结构,其UUYYGU六端位于同轴堆栈的相对两端,“T”的武器。\“对SARS-CoV-1和MERS的SL5域的进一步分析(7.1和6.4-6.9的分辨率,分别)表明,连接几何形状和六环间距离是所研究的感染人类的β冠状病毒的保守特征。MERSSL5域显示额外的三级交互,在非人类感染的β冠状病毒BtCoV-HKU5中也观察到了这一点(分辨率为5.9-8.0)。来自人类感染的字母冠状病毒的SL5,HCoV-229E和HCoV-NL63(分辨率为6.5和8.4-9.0,分别),展示相同的同轴叠层,包括UUYYGU帽的武器,但是在系统发育上有明显的交叉角度,X形。因此,本文研究的所有SL5结构域都折叠成具有交叉属相似性的稳定三级结构,与潜在的蛋白质结合模式和治疗靶标有关。
    Coronavirus genomes sequester their start codons within stem-loop 5 (SL5), a structured, 5\' genomic RNA element. In most alpha- and betacoronaviruses, the secondary structure of SL5 is predicted to contain a four-way junction of helical stems, some of which are capped with UUYYGU hexaloops. Here, using cryogenic electron microscopy (cryo-EM) and computational modeling with biochemically-determined secondary structures, we present three-dimensional structures of SL5 from six coronaviruses. The SL5 domain of betacoronavirus SARS-CoV-2, resolved at 4.7 Å resolution, exhibits a T-shaped structure, with its UUYYGU hexaloops at opposing ends of a coaxial stack, the T\'s \"arms.\" Further analysis of SL5 domains from SARS-CoV-1 and MERS (7.1 and 6.4-6.9 Å resolution, respectively) indicate that the junction geometry and inter-hexaloop distances are conserved features across the studied human-infecting betacoronaviruses. The MERS SL5 domain displays an additional tertiary interaction, which is also observed in the non-human-infecting betacoronavirus BtCoV-HKU5 (5.9-8.0 Å resolution). SL5s from human-infecting alphacoronaviruses, HCoV-229E and HCoV-NL63 (6.5 and 8.4-9.0 Å resolution, respectively), exhibit the same coaxial stacks, including the UUYYGU-capped arms, but with a phylogenetically distinct crossing angle, an X-shape. As such, all SL5 domains studied herein fold into stable tertiary structures with cross-genus similarities, with implications for potential protein-binding modes and therapeutic targets.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Preprint
    细胞的自我组织依赖于蛋白质-蛋白质相互作用的深刻复杂性。直接观察这些事件的挑战阻碍了对其不同行为的理解。一个值得注意的例子是分子马达和细胞骨架系统之间的相互作用,它们结合起来执行各种细胞功能。在这项工作中,我们利用理论和实验来识别和量化载货驱动蛋白运动和微管轨道之间初始关联的速率限制机制。光学镊子的最新进展为在距微管不同距离处捕获的几种长度的驱动蛋白马达提供了结合时间,授权对竞争模型的调查。我们首先探索一个扩散受限的结合模型。通过布朗动力学模拟和基于模拟的推断,我们发现这个简单的扩散模型无法解释实验的结合时间,但是解释分子马达ADP状态的扩展模型与数据非常吻合,即使在惩罚额外的模型复杂性的审查下。我们提供了所提出的结合过程的动力学速率和生物物理参数的定量。我们的模型表明,大多数但不是每个运动结合事件都受到其ADP状态的限制。最后,我们预测如何通过环境浓度和空间距离的变化以不同的方式调节这些关联率。
    细胞骨骼-运动组件自组织,以实现从传递细胞内货物到在有丝分裂中产生力的细胞功能。单分子实验的进步揭示了关于电机分离和步进的巨大细节,但关于依恋过程相对较少。通过光学陷阱新获得的空间参数化运动结合时间,对结合的机械模型的评估成为可能。我们发现,受扩散搜索和ADP释放限制的模型可以最好地解释数据。这种相互作用的耦合化学机械性质比任何一个单独的都更具延展性,可能解释了细胞中观察到的丰富多样性和调控。更广泛地说,我们的研究提供了一个及时的插图,利用实验计算来了解几何形状和其他复杂性如何塑造蛋白质-蛋白质相互作用。
    The self-organization of cells relies on the profound complexity of protein-protein interactions. Challenges in directly observing these events have hindered progress toward understanding their diverse behaviors. One notable example is the interaction between molecular motors and cytoskeletal systems that combine to perform a variety of cellular functions. In this work, we leverage theory and experiments to identify and quantify the rate-limiting mechanism of the initial association between a cargo-bound kinesin motor and a microtubule track. Recent advances in optical tweezers provide binding times for several lengths of kinesin motors trapped at varying distances from a microtubule, empowering the investigation of competing models. We first explore a diffusion-limited model of binding. Through Brownian dynamics simulations and simulation-based inference, we find this simple diffusion model fails to explain the experimental binding times, but an extended model that accounts for the ADP state of the molecular motor agrees closely with the data, even under the scrutiny of penalizing for additional model complexity. We provide quantification of both kinetic rates and biophysical parameters underlying the proposed binding process. Our model suggests that most but not every motor binding event is limited by their ADP state. Lastly, we predict how these association rates can be modulated in distinct ways through variation of environmental concentrations and spatial distances.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

公众号