Biomolecule detection

  • 文章类型: Journal Article
    在过去的几十年里,基于场效应晶体管(FET)的生物传感器已在各个行业中显示出巨大的潜力,包括医疗,食物,农业,环境,和军事部门。这些生物传感器利用晶体管的电特性来检测各种生物分子,如蛋白质,DNA,和抗体。本文对基于FET的生物传感器的架构的进步进行了全面的回顾,旨在提高器件在灵敏度方面的性能。检测时间,和选择性。审查包括新兴的基于FET的生物传感器的概述和有用的指导方针,以达到最佳的器件尺寸,良好的设计,并实现了基于FET的生物传感器。因此,它为研究人员提供了关于未来几代基于FET的生物传感器的设计考虑和应用的详细观点。最后,本文为进一步研究基于FET的生物传感器的拓扑结构提出了有趣的途径。
    Over the last few decades, field-effect transistor (FET)-based biosensors have demonstrated great potential across various industries, including medical, food, agriculture, environmental, and military sectors. These biosensors leverage the electrical properties of transistors to detect a wide range of biomolecules, such as proteins, DNA, and antibodies. This article presents a comprehensive review of advancements in the architectures of FET-based biosensors aiming to enhance device performance in terms of sensitivity, detection time, and selectivity. The review encompasses an overview of emerging FET-based biosensors and useful guidelines to reach the best device dimensions, favorable design, and realization of FET-based biosensors. Consequently, it furnishes researchers with a detailed perspective on design considerations and applications for future generations of FET-based biosensors. Finally, this article proposes intriguing avenues for further research on the topology of FET-based biosensors.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    这里,我们报告了表面增强拉曼散射(SERS)技术与深海可部署拉曼光谱仪的耦合进展。我们的SERS能力是通过开发一种载有铜泡沫的银纳米豆(Ag/Cu泡沫)来提供的,我们已经成功地将其耦合到能够插入深海沉积物和相关流体的拉曼探头的尖端。我们的目的是扩大可以在深海生物地球化学环境中检测到的分子种类的范围,据报道,我们最初的目标是在渗漏地点的孔隙水中发现的一系列氨基酸。我们的工作已经进展到对基本的船舶系绳-ROV-深海拉曼系统进行基于码头的端到端测试的程度。我们在这里显示了该测试的初始结果,作为在海上完全海洋深度部署之前的基本要求。我们详细描述了制备Ag/Cu泡沫豆的程序,并在我们的端到端测试中证明,当耦合到光谱仪探针尖端时,对于测试分子和10-6M水平的氨基酸检测,SERS信号增强为1.2×106,与报告的自然发生水平一致。每个纳米豆单元用于一次性感测,因为样品流体侵入Ag/Cu泡沫基质是不可逆的。我们描述了在深度旋转/更换豆子的技术,以允许在每次水下机器人潜水期间在多个位置进行多次分析。
    Here, we report on progress made in coupling advances in surface-enhanced Raman scattering (SERS) techniques with a deep-ocean deployable Raman spectrometer. Our SERS capability is provided by development of a Cu foam-loaded silver-nanobean (Ag/Cu foam) which we have successfully coupled to the tip of a Raman probe head capable of insertion into deep-sea sediments and associated fluids. Our purpose is to expand the range of molecular species which can be detected in deep-sea biogeochemical environments, and our initial targets are a series of amino acids reportedly found in pore waters of seep locations. Our work has progressed to the point of a full dock-based end-to-end test of the essential ship tether-ROV-deep-sea Raman system. We show here the initial results from this test as the essential requirement before at sea full ocean depth deployment. We describe in detail the procedures for preparing the Ag/Cu foam bean and demonstrate in our end-to-end test that this, when coupled to the spectrometer probe tip, yields a SERS signal enhancement of 1.2 × 106 for test molecules and detection of amino acids at 10-6 M levels consistent with reported levels of natural occurrence. Each nanobean unit is for single-use sensing since invasion of the sample fluid into the Ag/Cu foam matrix is not reversible. We describe techniques for bean rotation/replacement at depth to allow for multiple analyses at several locations during each ROV dive.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    纳米孔传感器技术以其成本低、操作简便等优点被广泛应用于生物分子检测。在各种纳米孔制造方法中,可控介质击穿在保证检测性能的前提下,具有制造工艺简单、成本低等优点。在本文中,我们对受控介电击穿中施加的脉冲进行了增强,并利用改进的介电击穿技术制造了直径为5至15nm的氮化硅纳米孔。我们改进的制造方法提供了对纳米孔直径(±0.4nm)的精确控制的优点,并增强了纳米孔的对称性。制作后,我们对纳米孔进行了电学表征,IV特性表现出较高的线性度。随后,我们使用制备的纳米孔进行了DNA和蛋白质的检测实验,以评估使用我们的方法制造的纳米孔的检测性能。此外,我们还给出了分子通过纳米孔移位的物理模型,以合理解释数据处理结果。
    Nanopore sensor technology is widely used in biomolecular detection due to its advantages of low cost and easy operation. In a variety of nanopore manufacturing methods, controlled dielectric breakdown has the advantages of a simple manufacturing process and low cost under the premise of ensuring detection performance. In this paper, we have made enhancements to the applied pulses in controlled dielectric breakdown and utilized the improved dielectric breakdown technique to fabricate silicon nitride nanopores with diameters of 5 to 15 nm. Our improved fabrication method offers the advantage of precise control over the nanopore diameter (±0.4 nm) and enhances the symmetry of the nanopore. After fabrication, we performed electrical characterization on the nanopores, and the IV characteristics exhibited high linearity. Subsequently, we conducted detection experiments for DNA and protein using the prepared nanopores to assess the detection performance of the nanopores fabricated using our method. In addition, we also give a physical model of molecule translocation through the nanopores to give a reasonable explanation of the data processing results.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    生物通道,尤其是膜蛋白,在新陈代谢中起着至关重要的作用,促进营养物质和其他物质在生物电解质环境中跨细胞膜的运输。人工纳米孔用于研究内部的离子和生物分子传输行为。虽然纳米孔表面和运输靶标之间的非特异性相互作用已经引起了极大的关注。表面粗糙度的影响被忽视。在这项研究中,通过调整FIB(聚焦离子束)制造参数来产生具有不同水平的内表面粗糙度的纳米孔。采用实验和分子动力学(MD)模拟来证明更大的粗糙度是由更大的FIB束电流和更短的处理时间引起的。较低的粗糙度增加了生物分子的捕获率,而更大的粗糙度增强了归一化阻塞电流(ΔI/I0)。粗糙纳米孔的现象归因于屏障主导的捕获机制,并且更可能诱导DNA折叠。通过利用转向分子动力学(SMD)模拟研究dA10DNA分子在易位过程中的力分布,证明了这种传输屏障存在于粗糙的纳米孔中。这项工作说明了表面粗糙度如何影响离子电流特征和生物分子的易位,为纳米孔中的分子传输提供了一条新的途径。
    Biological channels, especially membrane proteins, play a crucial role in metabolism, facilitating the transport of nutrients and other materials across cell membranes in a bio-electrolyte environment. Artificial nanopores are employed to study ion and biomolecule transport behavior inside. While the non-specific interaction between the nanopore surface and transport targets has garnered significant attention, the impact of surface roughness is overlooked. In this study, Nanopores with different levels of inner surface roughness is created by adjusting the FIB (Focus Ion Beam) fabrication parameters. Experiments and molecular dynamics (MD) simulations are employed to demonstrate that greater roughness results from larger FIB beam currents and shorter processing times. Lower roughness increases the capture rate of biomolecules, while greater roughness enhances the normalized blockade current (ΔI/I0 ). The phenomenon of rougher nanopores are attributed to a barrier-dominated capture mechanism and more likely to induce DNA folding. This transport barrier exists in rough nanopores by utilizing steer molecular dynamics (SMD) simulations to investigate the force profile of a dA10 DNA molecule during translocation is demonstrated. This work illustrates how surface roughness influences the ionic current features and the translocation of biomolecules, paving a new way for tunning the molecule transport in nanopores.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    纳米材料是用于在生命系统中提供治疗剂的新兴事实。纳米技术是通过实现不同种类的纳米技术应用,如纳米多孔结构,功能化纳米材料,量子点,碳纳米材料,和聚合物纳米结构。申请还处于初始阶段,这导致在临床实践中实现了多种诊断和治疗。这篇综述传达了纳米材料在后基因组就业中的重要性,其中包括免疫传感器的设计,免疫测定,和药物输送。在这个观点中,基因组学是一种分子工具,包含大型数据库,可用于选择适当的分子抑制剂,如药物,配体和抗体靶标在药物递送过程中。这项研究确定了基因和蛋白质在疾病分析和分类中的表达。实验上,这项研究分析了疾病模型的设计。特别是,药物输送是治疗癌症的有利领域。确定的药物进入不同的阶段跟踪(跟踪I,II,andIII).基因组信息将更重要的实体传达给I期试验,并有助于进一步发展其他路径,如路径-II和III。在这种情况下,生物标志物通过监测独特的病理过程发挥着至关重要的作用。使用重组DNA技术的基因工程可用于开发基因工程疾病模型。在特定区域递送药物是使用纳米粒子实现的挑战性问题之一。因此,基因组学被认为是一个巨大的分子工具,用于在癌症治疗的个体化药物中识别药物。
    Nanomaterials are emerging facts used to deliver therapeutic agents in living systems. Nanotechnology is used as a compliment by implementing different kinds of nanotechnological applications such as nano-porous structures, functionalized nanomaterials, quantum dots, carbon nanomaterials, and polymeric nanostructures. The applications are in the initial stage, which led to achieving several diagnoses and therapy in clinical practice. This review conveys the importance of nanomaterials in post-genomic employment, which includes the design of immunosensors, immune assays, and drug delivery. In this view, genomics is a molecular tool containing large databases that are useful in choosing an apt molecular inhibitor such as drug, ligand and antibody target in the drug delivery process. This study identifies the expression of genes and proteins in analysis and classification of diseases. Experimentally, the study analyses the design of a disease model. In particular, drug delivery is a boon area to treat cancer. The identified drugs enter different phase trails (Trails I, II, and III). The genomic information conveys more essential entities to the phase I trials and helps to move further for other trails such as trails-II and III. In such cases, the biomarkers play a crucial role by monitoring the unique pathological process. Genetic engineering with recombinant DNA techniques can be employed to develop genetically engineered disease models. Delivering drugs in a specific area is one of the challenging issues achieved using nanoparticles. Therefore, genomics is considered as a vast molecular tool to identify drugs in personalized medicine for cancer therapy.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    基于CRISPR的检测技术已被广泛用于分子诊断。然而,挑战在于转换不同生物分子的信号,如核酸,蛋白质,小分子,外泌体,和离子,进入基于CRISPR的核酸检测信号。了解使用CRISPR技术检测不同生物分子可以帮助开发实用且有前途的检测方法。不幸的是,现有的综述很少从不同生物分子的角度提供基于CRISPR的分子诊断的概述。在这里,我们首先介绍了用于分子诊断的各种CRISPR核酸酶的原理和特点。然后,我们专注于总结和评估基于CRISPR的不同生物分子检测的最新进展。通过比较不同的放大和信号读出方法,我们讨论了一般检测方法如何与CRISPR集成。最后,最后,我们确定了在定量方面改进CRISPR的机会,无放大,多路复用,多合一,和即时测试(POCT)目的。
    CRISPR-based detection technologies have been widely explored for molecular diagnostics. However, the challenge lies in converting the signal of different biomolecules, such as nucleic acids, proteins, small molecules, exosomes, and ions, into a CRISPR-based nucleic acid detection signal. Understanding the detection of different biomolecules using CRISPR technology can aid in the development of practical and promising detection approaches. Unfortunately, existing reviews rarely provide an overview of CRISPR-based molecular diagnostics from the perspective of different biomolecules. Herein, we first introduce the principles and characteristics of various CRISPR nucleases for molecular diagnostics. Then, we focus on summarizing and evaluating the latest advancements in CRISPR-based detection of different biomolecules. Through a comparison of different methods of amplification and signal readout, we discuss how general detection methods can be integrated with CRISPR. Finally, we conclude by identifying opportunities for the improvement of CRISPR in quantitative, amplification-free, multiplex, all-in-one, and point-of-care testing (POCT) purposes.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    生物分子的检测对于患者诊断至关重要,疾病管理,和许多其他应用程序。最近,已经探索了基于纳米和微粒的检测,通过减少所需的样品体积和测定时间以及增强可调性来改进传统测定。在这些方法中,将粒子运动与生物分子浓度耦合的基于主动粒子的测定通过简化的信号输出扩大测定的可及性。然而,这些方法中的大多数都需要二级标签,这会使工作流程复杂化并引入其他错误点。这里,我们展示了一个无标签的概念证明,使用电动活性粒子的基于运动的生物分子检测系统。我们准备了感应电荷电泳微传感器(ICEM),用于捕获两个模型生物分子,链霉亲和素和卵清蛋白,并且显示生物分子的特异性捕获导致通过浓度低至0.1nM的ICEM速度抑制的直接信号转导。这项工作为快速,简单,和使用活性颗粒的无标记生物分子检测。
    Detection of biomolecules is essential for patient diagnosis, disease management, and numerous other applications. Recently, nano- and microparticle-based detection has been explored for improving traditional assays by reducing required sample volumes and assay times as well as enhancing tunability. Among these approaches, active particle-based assays that couple particle motion to biomolecule concentration expand assay accessibility through simplified signal outputs. However, most of these approaches require secondary labeling, which complicates workflows and introduces additional points of error. Here, we show a proof-of-concept for a label-free, motion-based biomolecule detection system using electrokinetic active particles. We prepare induced-charge electrophoretic microsensors (ICEMs) for the capture of two model biomolecules, streptavidin and ovalbumin, and show that the specific capture of the biomolecules leads to direct signal transduction through ICEM speed suppression at concentrations as low as 0.1 nM. This work lays the foundation for a new paradigm of rapid, simple, and label-free biomolecule detection using active particles.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    卟啉类化合物和它们的类似化合物在生物传感应用中起着重要的作用,协调,光物理,和电化学性质。通过合成修饰类卟啉环和改变各种结构参数,例如外围功能化,可以对它们的显着特性进行微调。金属配位,以及与其他有机或无机支架如纳米颗粒共价或物理缀合,金属有机框架,和聚合物。卟啉类及其有机-无机缀合物不仅用作响应材料,而且还用于生物分子的固定和嵌入,以应用于可穿戴设备中。快速传感设备,和其他功能材料。本综述描述了不同卟啉类缀合物对其物理化学性质及其在一系列应用中作为生物传感器的特异性的影响。最新的卟啉类类型及其合成,修改,和功能化以及它们的优点和性能改进。
    Porphyrinoids and their analogous compounds play an important role in biosensing applications on account of their unique and versatile catalytic, coordination, photophysical, and electrochemical properties. Their remarkable arrays of properties can be finely tuned by synthetically modifying the porphyrinoid ring and varying the various structural parameters such as peripheral functionalization, metal coordination, and covalent or physical conjugation with other organic or inorganic scaffolds such as nanoparticles, metal-organic frameworks, and polymers. Porphyrinoids and their organic-inorganic conjugates are not only used as responsive materials but also utilized for the immobilization and embedding of biomolecules for applications in wearable devices, fast sensing devices, and other functional materials. The present review delineates the impact of different porphyrinoid conjugates on their physicochemical properties and their specificity as biosensors in a range of applications. The newest porphyrinoid types and their synthesis, modification, and functionalization are presented along with their advantages and performance improvements.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    表面增强拉曼散射(SERS)已广泛用于有效检测各种生物和有机分子。这种检测方法需要将分析物吸附到特定的金属纳米结构上,例如,Ag纳米颗粒。包含这种结构的基底(称为SERS基底)对于实现吸附和随后的SERS检测的人是用户友好的。这里,我们报告了基于有效制造Ag填充的阳极氧化铝(AAO)膜的强大SERS衬底。该膜包含许多纳米孔,其具有15nm的小的生长的孔间间隙。通过将银电化学沉积到纳米孔中而无需额外的孔加宽过程来创建基板。这通常是常规两步AAO制造所需要的。创建的基板包含分离良好的Ag纳米颗粒,颗粒间间隙很小,数量密度很高(2.5×1010cm-2)。我们使用一步阳极氧化,同时省略额外的孔加宽,以提高基板制造的吞吐量。对于罗丹明6G(R6G),此类底物可提供10-11M的低浓度检测极限和1×106的高SERS增强因子。腺嘌呤分析物证明了底物对生物和有机分子的有效检测,葡萄糖,R6G,曙红Y,还有亚甲蓝.这些结果使我们朝着基于AAO的SERS基板的成功商业化迈出了一步。
    Surface-enhanced Raman scattering (SERS) has been widely used to effectively detect various biological and organic molecules. This detection method needs analytes adsorbed onto a specific metal nanostructure, e.g., Ag-nanoparticles. A substrate containing such a structure (called SERS substrate) is user-friendly for people implementing the adsorption and subsequent SERS detection. Here, we report on powerful SERS substrates based on efficient fabrication of Ag-filled anodic aluminum oxide (AAO) films. The films contain many nanopores with small as-grown inter-pore gap of 15 nm. The substrates are created by electrochemically depositing silver into nanopores without an additional pore widening process, which is usually needed for conventional two-step AAO fabrication. The created substrates contain well-separated Ag-nanoparticles with quite a small inter-particle gap and a high number density (2.5 × 1010 cm-2). We use one-step anodization together with omitting additional pore widening to improve the throughput of substrate fabrication. Such substrates provide a low concentration detection limit of 10-11 M and high SERS enhancement factor of 1 × 106 for rhodamine 6G (R6G). The effective detection of biological and organic molecules by the substrate is demonstrated with analytes of adenine, glucose, R6G, eosin Y, and methylene blue. These results allow us to take one step further toward the successful commercialization of AAO-based SERS substrates.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    小生物分子的检测对于理解生物系统中的分子机制和在临床中进行体外诊断至关重要。当前基于抗体的检测方法在检测低浓度的小生物分子方面面临巨大挑战。我们报告了一种基于分子识别和纳米颗粒(NP)计数的检测小生物分子的新方法。适体官能化的NP与互补序列(CS)缀合的微粒(MP)载体连接。在超低浓度的目标小生物分子的存在下,NP将从MP载体释放。再加上一个电阻式脉冲传感器(RPS),使用一个微孔来计算释放的NP,该方法可以高灵敏度、高通量地测量低浓度的目标生物分子的浓度。以腺苷为模子证明了该办法的可行性。证明该方法可以检测广泛的腺苷浓度,低检测限为0.168nM,比ELISA试剂盒低10倍。凭借其简单的结构,高灵敏度,和高重现性,这种检测方法对低丰度小生物分子的超灵敏检测具有巨大的潜力。
    Detection of small biomolecules is critical for understanding molecular mechanisms in biological systems and performing in vitro diagnosis in clinics. Current antibody based detection methods face large challenges in detecting small biomolecules at low concentrations. We report a new method for detecting small biomolecules based on molecular recognition and nanoparticle (NP) counting. Aptamer-functionalized NPs are attached to complementary sequence (CS)-conjugated microparticle (MP) carriers. In the presence of target small biomolecules at ultra low concentrations, NPs would be released from the MP carriers. Coupled with a resistive pulse sensor (RPS) using a micropore that counts the released NPs, this method can measure the concentrations of target biomolecules at low concentrations with high sensitivity and high throughput. Adenosine was used as a model to demonstrate the feasibility of this method. It is demonstrated that this method can detect a wide range of adenosine concentrations with a low detection limit of 0.168 nM, which is 10 times lower than that of the ELISA kit. With its simple structure, high sensitivity, and high reproducibility, this detection method holds great potential for the ultrasensitive detection of low abundance small biomolecules.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

公众号