Biomass upgrading

生物质升级
  • 文章类型: Journal Article
    5-羟甲基糠醛(HMF)电催化氧化为2,5-呋喃二羧酸(FDCA),生产生物基塑料单体的可持续战略,总是在高浓度碱性溶液(1.0molL-1KOH)中进行,以获得高活性。然而,这种高浓度的碱带来了挑战,包括HMF降解和与产物分离相关的高操作成本。在这里,我们报道了一种单原子钌负载在Co3O4(Ru1-Co3O4)上作为催化剂,在低浓度碱性电解质(0.1molL-1KOH)中有效地工作,与可逆氢电极相比,表现出1.191V的低电势,以在0.1molL-1KOH中实现10mAcm-2,优于以前的催化剂。电化学研究表明,单原子Ru在OH-供应不足的情况下显着增强了羟基(OH-)吸附,从而改善HMF氧化。为了展示Ru1-Co3O4催化剂的潜力,我们证明了其在工业相关条件下在流动反应器中的高效率。最终,技术经济分析表明,用0.1molL-1KOH电解质代替常规1.0molL-1KOH可以显着降低FDCA的最低售价21.0%。这项工作证明了一种有效的催化剂设计,用于在不使用强碱性电解质的情况下对生物质进行电氧化,这可能有助于更经济的生物质电价化。
    Electrocatalytic oxidation of 5-hydroxymethylfurfural (HMF) to 2,5-furandicarboxylic acid (FDCA), a sustainable strategy to produce bio-based plastic monomer, is always conducted in a high-concentration alkaline solution (1.0 mol L-1 KOH) for high activity. However, such high concentration of alkali poses challenges including HMF degradation and high operation costs associated with product separation. Herein, we report a single-atom-ruthenium supported on Co3O4 (Ru1-Co3O4) as a catalyst that works efficiently in a low-concentration alkaline electrolyte (0.1 mol L-1 KOH), exhibiting a low potential of 1.191 V versus a reversible hydrogen electrode to achieve 10 mA cm-2 in 0.1 mol L-1 KOH, which outperforms previous catalysts. Electrochemical studies demonstrate that single-atom-Ru significantly enhances hydroxyl (OH-) adsorption with insufficient OH- supply, thus improving HMF oxidation. To showcase the potential of Ru1-Co3O4 catalyst, we demonstrate its high efficiency in a flow reactor under industrially relevant conditions. Eventually, techno-economic analysis shows that substitution of the conventional 1.0 mol L-1 KOH with 0.1 mol L-1 KOH electrolyte may significantly reduce the minimum selling price of FDCA by 21.0%. This work demonstrates an efficient catalyst design for electrooxidation of biomass working without using strong alkaline electrolyte that may contribute to more economic biomass electro-valorization.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    生物质分子的电化学氧化与制氢耦合是获得绿色能源和增值化学品的有前途的策略;然而,这种策略受到竞争性析氧反应和高能耗的限制。在这里,我们报告了具有丰富Ni空位的分层CoNi层状双氢氧化物(LDHs)电催化剂,用于5-羟甲基糠醛(HMF)的有效阳极氧化和阴极析氢。由于精细调节的电子结构和高度暴露的活性位点,独特的分层纳米片结构和Ni空位对几种生物质分子提供了出色的活性和选择性。特别是,高的法拉第效率(FE)在高电流密度(99%在100mAcm-2)实现HMF氧化,基于富含镍空位的LDH组装了一个双电极电解槽,实现了高纯度2,5-呋喃二羧酸产品的连续合成,收率高(95%)和FE(90%)。
    The electrochemical oxidation of biomass molecules coupling with hydrogen production is a promising strategy to obtain both green energy and value-added chemicals; however, this strategy is limited by the competing oxygen evolution reactions and high energy consumption. Herein, we report a hierarchical CoNi layered double hydroxides (LDHs) electrocatalyst with abundant Ni vacancies for the efficient anodic oxidation of 5-hydroxymethylfurfural (HMF) and cathodic hydrogen evolution. The unique hierarchical nanosheet structure and Ni vacancies provide outstanding activity and selectivity toward several biomass molecules because of the finely regulated electronic structure and highly-exposed active sites. In particular, a high faradaic efficiency (FE) at a high current density (99% at 100 mA cm-2) is achieved for HMF oxidation, and a two-electrode electrolyzer is assembled based on the Ni vacancies-enriched LDH, which realized a continuous synthesis of highly-pure 2,5-furandicarboxylic acid products with high yields (95%) and FE (90%).
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    作为可持续的增值路线,电化学甘油氧化反应(GOR)涉及关键OH*的形成和C-C(O)中间体的多步电子转移的选择性吸附/裂解,因此,对于大多数非贵金属基电催化剂,存在高电势和差的甲酸选择性。所以,理解结构-性质关系以及构建协同位点以实现高活性和高选择性GOR仍然具有挑战性。在这里,通过在Ni合金化的Co基尖晶石中形成协同的Lewis和Brønsted酸位,我们成功地实现了具有低电位和对GOR的优异甲酸选择性的双高性能。优化的NiCo氧化物固体酸电催化剂表现出低反应电位(1.219V@10mA/cm2)和对GOR的高甲酸选择性(94.0%)。原位电化学阻抗谱和pH依赖性测量表明,路易斯酸中心可以加速OH*的产生,而布朗斯台德酸中心被证明有助于高选择性地形成甲酸盐。理论计算表明,NiCo合金氧化物具有适当的d带中心,从而平衡C-O中间体的吸附/解吸。这项研究为合理设计用于生物质电再循环的固体酸电催化剂提供了新的见解。
    As a sustainable valorization route, electrochemical glycerol oxidation reaction (GOR) involves in formation of key OH* and selective adsorption/cleavage of C-C(O) intermediates with multi-step electron transfer, thus suffering from high potential and poor formate selectivity for most non-noble-metal-based electrocatalysts. So, it remains challenging to understand the structure-property relationship as well as construct synergistic sites to realize high-activity and high-selectivity GOR. Herein, we successfully achieve dual-high performance with low potentials and superior formate selectivity for GOR by forming synergistic Lewis and Brønsted acid sites in Ni-alloyed Co-based spinel. The optimized NiCo oxide solid-acid electrocatalyst exhibits low reaction potential (1.219 V@10 mA/cm2) and high formate selectivity (94.0 %) toward GOR. In situ electrochemical impedance spectroscopy and pH-dependence measurements show that the Lewis acid centers could accelerate OH* production, while the Brønsted acid centers are proved to facilitate high-selectivity formation of formate. Theoretical calculations reveal that NiCo alloyed oxide shows appropriate d-band center, thus balancing adsorption/desorption of C-O intermediates. This study provides new insights into rationally designing solid-acid electrocatalysts for biomass electro-upcycling.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    生物质基5-羟甲基糠醛(HMF)的电化学氧化是获得2,5-呋喃二羧酸(FDCA)高价值产品的有效途径。然而,用于电催化剂的高价金属活性物质的受限形成导致HMF氧化反应(HMOF)的缓慢动力学过程。在这里,我们制造了富含Ni3的交联α-Ni(OH)2纳米片,用于通过阴离子介导的策略加速HMOF。确定具有强渗透性的Cl-离子取代α-Ni(OH)2中的一部分晶格氧原子形成Ni-Cl键,有助于打破固有的晶格顺序并产生特殊的富Ni3结构。由于丰富的Ni3活性物质促进了羟基和醛基的吸附和加速氧化,在1.45V时实现了116.5mAcm-2的大氧化电流密度和0.067min-1的HMOF动力学常数(vs.RHE)。通过分析氧化产物,对于五次连续测定,FDCA产率和Faradic效率均高于99.25%和99.36%。因此,这项工作为设计用于生物质转化应用的高性能电催化剂提供了一种有洞察力的阴离子介导策略。
    Electrochemical oxidation of biomass-based 5-hydroxymethylfurfural (HMF) is an effective approach for achieving the high-value products of 2,5-furandicarboxylic acid (FDCA). However, the restricted formation of high-valence metal active species for electrocatalysts results in a sluggish kinetic process of HMF oxidation reaction (HMFOR). Herein, we fabricated the Ni3+-rich cross-linked α-Ni(OH)2 nanosheets for accelerating the HMFOR through an anion-mediated strategy. It is identified that the Cl- ions with strong penetrability replace a portion of lattice oxygen atoms in α-Ni(OH)2 to form Ni-Cl bonds, contributing to breaking the inherent lattice order and generating a special Ni3+-rich structure. Owing to the promoted adsorption and accelerated oxidation of hydroxyl and aldehyde groups by the affluent Ni3+ active species, the large oxidation current density of 116.5 mA cm-2 and HMFOR kinetic constant of 0.067 min-1 has been achieved at 1.45 V (vs. RHE). By analyzing the oxidation products, the FDCA yield and Faradic efficiency are both higher than 99.25 % and 99.36 % for five successive determinations. Therefore, this work provides an insightful anion-mediated strategy for designing high-performance electrocatalysts for biomass conversion application.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    丙氨酸广泛用于合成聚合物,制药,和农用化学品。生物质分子和废弃硝酸盐的电催化偶联对于在环境条件下的硝酸盐去除和丙氨酸生产具有吸引力。然而,由于稳定底物的活化,反应效率相对较低,和两个反应中间体的偶联仍然具有挑战性。在这里,我们实现了由PdCu纳米珠线(PdCuNBWs)催化的生物质衍生丙酮酸(PA)和废弃硝酸盐(NO3-)合成丙氨酸的电化学-化学-电化学合成。通过在催化剂表面上偶联反应性中间体NH2OH和PA,证明了整个反应途径是多步催化级联过程。有趣的是,在这种串联电化学-化学-电化学催化级联过程中,Cu促进硝酸盐电化学还原为NH2OH中间体,与PA化学耦合形成丙酮酸肟,和Pd促进丙酮酸肟电化学还原为所需的丙氨酸。这项工作提供了一种绿色策略,将废物NO3转化为财富,并丰富了可再生生物质原料的底物范围,以生产高价值的氨基酸。
    Alanine is widely employed for synthesizing polymers, pharmaceuticals, and agrochemicals. Electrocatalytic coupling of biomass molecules and waste nitrate is attractive for the nitrate removal and alanine production under ambient conditions. However, the reaction efficiency is relatively low due to the activation of the stable substrates, and the coupling of two reactive intermediates remains challenging. Herein, we realize the integrated tandem electrochemical-chemical-electochemical synthesis of alanine from the biomass-derived pyruvic acid (PA) and waste nitrate (NO3 - ) catalyzed by PdCu nano-bead-wires (PdCu NBWs). The overall reaction pathway is demonstrated as a multiple-step catalytic cascade process via coupling the reactive intermediates NH2 OH and PA on the catalyst surface. Interestingly, in this integrated tandem electrochemical-chemical-electrochemical catalytic cascade process, Cu facilitates the electrochemical reduction of nitrate to NH2 OH intermediates, which chemically couple with PA to form the pyruvic oxime, and Pd promotes the electrochemical reduction of pyruvic oxime to the desirable alanine. This work provides a green strategy to convert waste NO3 - to wealth and enriches the substrate scope of renewable biomass feedstocks to produce high-value amino acids.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    电驱动的有机氧化最近显示出越来越大的潜力。然而,析氧反应(OER)是主要的竞争反应,特别是在高电流密度下,这导致产物的低法拉第效率(FE)和催化剂从电极脱离。这里,我们报道了一种负载在Ni泡沫(Ni-Cu/NF)上的双金属Ni-Cu电催化剂,以钝化OER过程,同时5-羟甲基糠醛(HMF)的氧化显着增强。在1.50V时可以实现1000mAcm-2的电流密度可逆氢电极,在很宽的电位范围内,FE和产量都保持接近100%。实验结果和理论计算均表明,Cu掺杂会阻碍OH*脱质子化为O*,从而大大钝化了OER过程。这些指导性结果为通过调节OER活性实现高效生物质升级提供了新的途径。
    Electricity-driven organo-oxidations have shown an increasing potential recently. However, oxygen evolution reaction (OER) is the primary competitive reaction, especially under high current densities, which leads to low Faradaic efficiency (FE) of the product and catalyst detachment from the electrode. Here, we report a bimetallic Ni-Cu electrocatalyst supported on Ni foam (Ni-Cu/NF) to passivate the OER process while the oxidation of 5-hydroxymethylfurfural (HMF) is significantly enhanced. A current density of 1000 mA cm-2 can be achieved at 1.50 V vs. reversible hydrogen electrode, and both FE and yield keep close to 100 % over a wide range of potentials. Both experimental results and theoretical calculations reveal that Cu doping impedes the OH* deprotonation to O* and hereby OER process is greatly passivated. Those instructive results provide a new approach to realizing highly efficient biomass upgrading by regulating the OER activity.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    迄今为止,通常认为在金电极上将醛选择性氧化为羧酸盐的电活性物质是二醇盐。它只在非常碱性的电解质中以高浓度形成,当OH-与羰基碳结合时。因此,在许多电极材料中,生物质衍生醛向羧酸盐的电化学升级被认为限于非常碱性的电解质。然而,这些电解质中的OH诱导的醛分解阻止了电化学醛氧化的应用,用于在工业规模上将生物质可持续地升级为增值化学品。这里,我们证明了脂肪醛在pH12的旋转金电极上的成功氧化,其中只有1%的醛作为二醇盐物种存在。这个浓度太小,不足以说明观察到的电流,这表明,其它醛物质(即,对基二醇和非水合醛)也是电活性的。这种洞察力使我们能够开发出省略醛分解的策略,在实现选择性醛氧化的高电流密度的同时,使其未来的工业应用可行。
    To date the electroactive species of selective aldehyde oxidation to carboxylates at gold electrodes is usually assumed to be the diolate. It forms with high concentration only in very alkaline electrolytes, when OH- binds to the carbonyl carbon atom. Accordingly, the electrochemical upgrading of biomass-derived aldehydes to carboxylates is believed to be limited to very alkaline electrolytes at many electrode materials. However, OH- -induced aldehyde decomposition in these electrolytes prevents application of electrochemical aldehyde oxidation for the sustainable upgrading of biomass to value-added chemicals at industrial scale. Here, we demonstrate the successful oxidation of aliphatic aldehydes at a rotating gold electrode at pH 12, where only 1 % of the aldehyde resides as the diolate species. This concentration is too small to account for the observed current, which shows that also other aldehyde species (i. e., the geminal diol and the non-hydrated aldehyde) are electroactive. This insight allows developing strategies to omit aldehyde decomposition while achieving high current densities for the selective aldehyde oxidation, making its future industrial application viable.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    可以在电力存储和发电过程中产生有价值的化学物质的可再充电电池的开发对于提高电子经济和经济价值具有巨大的前景。然而,这个电池还有待探索。在这里,我们报告了一种生物质液流电池,它在产生糠酸的同时发电,并储存电力,同时产生糠醇。电池由铑铜(Rh1Cu)单原子合金作为阳极,以钴掺杂的氢氧化镍(Co0.2Ni0.8(OH)2)为阴极,和含糠醛的阳极电解液。在完整电池评估中,该电池的开路电压(OCV)为1.29V,峰值功率密度高达107mWcm-2,超过大多数催化-电池混合动力系统。作为一个概念证明,我们证明,这种电池产生1公斤的糠酸,电力输出0.78千瓦时,当存储1kWh电时,产量为0.62kg糠醇。这项工作可以揭示具有增值功能的可充电电池的设计,例如化学品生产。
    The development of a rechargeable battery that can produce valuable chemicals in both electricity storage and generation processes holds great promise for increasing the electron economy and economic value. However, this battery has yet to be explored. Herein, we report a biomass flow battery that generates electricity while producing furoic acid, and store electricity while yielding furfuryl alcohol. The battery is composed of a rhodium-copper (Rh1 Cu) single-atom alloy as anode, a cobalt-doped nickel hydroxide (Co0.2 Ni0.8 (OH)2 ) as cathode, and furfural-containing anolyte. In a full battery evaluation, this battery displays an open circuit voltage (OCV) of 1.29 V and a peak power density up to 107 mW cm-2 , surpassing most catalysis-battery hybrid systems. As a proof-of-concept, we demonstrate that this battery produces 1 kg furoic acid with 0.78 kWh electricity output, and yields 0.62 kg furfuryl alcohol when 1 kWh electricity is stored. This work may shed light on the design of rechargeable batteries with value-added functionality such as chemicals production.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    世界各地的炼油厂正在考虑或正在积极地用替代来源取代一部分来自化石来源的原油投入,包括再生材料(塑料,城市垃圾,混合固体废物)和可再生材料(生物质废物,植物油)。在本文中,我们探索这种替代,特别关注流化催化裂化(FCC)操作。五种热解油,从城市固体废物(MSW)和生物材料(橄榄石/坑)中获得,在实验室规模的反应器中,使用工业上可获得的基于超稳定Y沸石的流体催化裂化催化剂以模拟流体催化裂化共处理,在10%负载下相对于标准流体催化裂化(FCC)真空瓦斯油(VGO)进料进行充分表征和测试。尽管具有独特的饲料特性,包括高康拉逊碳(例如,高达19.41wt%),水(例如,高达5.7wt%),和污染物(例如,在某些情况下高达227ppmCl),五种热解油的产率与真空瓦斯油相似。汽油略(约。1wt%)在所有情况下均较高,LPG略高(约1wt%)较低。液化石油气流中的烯烃度没有变化,塔底油和轻循环油(LCO)没有显著变化,而干燥气体稍低(高达-0.2wt%)。焦炭选择性也没有变化(最大-7.7wt%,相对而言),在工业流体催化裂化装置中进行共处理时,建议最少或没有热平衡问题。结果表明,城市固体废物和生物来源的热解油适用于炼油厂。探索了催化剂的设计理念,基于更高的稀土氧化物交换和/或ZSM-5沸石的利用,这将进一步最小化用热解油代替化石油的影响,即将1%的汽油换成液化石油气。
    Refiners around the globe are either considering or are actively replacing a portion of their crude oil inputs originating from fossil sources with alternative sources, including recycled materials (plastics, urban waste, mixed solid waste) and renewable materials (bio-mass waste, vegetable oils). In this paper, we explore such replacement, specifically focusing on the fluid catalytic cracking (FCC) operation. Five pyrolysis oils, obtained from municipal solid waste (MSW) and biogenic material (olive stones/pits), were fully characterized and tested at 10% loading against a standard fluid catalytic cracking (FCC) vacuum gasoil (VGO) feed in a bench scale reactor using an industrially available fluid catalytic cracking catalyst based on ultrastable Y zeolite to simulate fluid catalytic cracking co-processing. Despite having unique feed properties, including high Conradson carbon (e.g., up to 19.41 wt%), water (e.g., up to 5.7 wt%), and contaminants (e.g., up to 227 ppm Cl) in some cases, the five pyrolysis oils gave similar yield patterns as vacuum gasoil. Gasoline was slightly (ca. 1 wt%) higher in all cases and LPG slightly (ca. 1 wt%) lower. Olefinicity in the LPG streams were unchanged, bottoms and light cycle oil (LCO) showed no significant changes, while dry gas was slightly (up to -0.2 wt%) lower. Coke selectivity was also unchanged (maximum -7.7 wt%, relatively), suggesting minimal to no heat balance concerns when co-processing in an industrial fluid catalytic cracking unit. The results demonstrate the applicability of municipal solid waste and biogenic originating pyrolysis oils into a refinery. A catalyst design concept is explored, based on higher rare Earth oxide exchange and/or utilization of ZSM-5 zeolite, that would further minimize the impacts of replacing fossil oils with pyrolysis oils, namely one that shifts the 1% higher gasoline into LPG.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    电催化生物质改质已被证明是产生增值产品的有效技术。在这里,介绍了使用过渡金属硼化物(MBenes)同时生产氢气的糠醛改质的设计和开发。利用密度泛函理论,稳定性,选择性,并系统地评估了13种MBene候选物质的活性,以进行糠醛升级。这项研究表明,Fe2B2可以作为一种有前途的电催化剂,用于形成糠酸(FAC),极限电位为-0.15V,和5-羟基-2(5H)-呋喃酮(HFO),极限电位为-0.93V。此外,Fe2B2和Mn2Fe2显示出-1.35和-1.36V的有利极限电势,分别,用于生产6-羟基-2.3-二氢-6H-吡喃-3-酮(HDPO),表明它们也可以用作电催化剂。根据Sabatier的原则,考虑到金属的电负性和d电子数,开发了材料性质的描述符(φ)用于筛选具有高催化活性的催化剂。此外,表面氧化还原电位,电子性质,并确定Fe2B2的电荷密度差,估计其对糠醛氧化为FAC和HFO表现出高催化活性。
    Electrocatalytic biomass upgrading has proven to be an effective technique for generating value-added products. Herein, the design and development of furfural upgrading using transition-metal borides (MBenes) with simultaneous production of hydrogen are presented. Using density functional theory, the stabilities, selectivities, and activities of 13 MBene candidates are systematically evaluated for furfural upgrading. This research suggests that Fe2 B2 can serve as a promising electrocatalyst for the formation of furoic acid (FAC), with a limiting potential of -0.15 V, and 5-hydroxy-2(5H)-furanone (HFO), with a limiting potential of -0.93 V. Furthermore, Fe2 B2 and Mn2 Fe2 are shown to exhibit favorable limiting potentials of -1.35 and -1.36 V, respectively, for producing 6-hydroxy-2.3-dihydro-6H-pyrano-3-one (HDPO), indicating that they may also serve as electrocatalysts. Based on Sabatier\'s principle, a descriptor (φ) of material properties is developed for screening catalysts with high catalytic activity considering the electronegativities and d-electron number of metals. Additionally, surface redox potential, electronic properties, and charge-density differences are determined for Fe2 B2 , which is estimated to exhibit high catalytic activity for the oxidation of furfural to FAC and HFO.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

公众号