Biochar regeneration

  • 文章类型: Journal Article
    由未知病原体和水传播引起的威胁性感染的广泛爆发催生了用于消除病原体的吸附方法的发展。我们提出了一种涉及ε-聚赖氨酸(PLL)的生物炭功能化策略,具有可变折叠构象的生物大分子聚(氨基酸),作为生物炭上的“病原体夹持器”。PLL通过聚多巴胺(PDA)交联成功地桥接到生物炭上。PLL内正电侧链的延伸使得能够捕获水中的纳米级病毒和微米级细菌。实现优异的去除性能。将这种功能化的生物炭暂时掺入超滤(UF)系统中,实现病原体的有效和可控的吸附和保留,并实现病原体从膜表面/孔转移到生物炭表面以及冲洗水。生物炭改良的UF系统具有完全保留(〜7LRV)和将病原体水力洗脱到膜冲洗水中。观察到有机物去除和防污能力的改善,表明UF病原体去除的折衷取决于不可逆的结垢。化学表征揭示了包含静电/疏水相互作用的吸附机制,孔隙充填,电子转移,化学键合和二级结构转变。微观和机械分析验证了快速吸附和病原体裂解的机制。低浓度碱性溶液用于生物炭再生,促进PLL侧链向折叠结构(α-螺旋/β-折叠)的去质子化和转化。生物炭再生过程还促进了病原体的有效分离/失活和生物炭上官能团的保护。通过物理化学检查和分子动力学模拟得到证实。聚(氨基酸)的可折叠性像动态臂一样,显着有助于病原体捕获/解吸/灭活和生物炭再生。这项研究还启发了未来的研究,研究了在不同压力下通过聚(氨基酸)s官能化生物炭修改的UF系统的性能,温度,进料和化学清洁溶液的活性氧,对公共卫生有着深远的影响,生物炭的环境应用,和UF工艺改进。
    Widespread outbreaks of threatening infections caused by unknown pathogens and water transmission have spawned the development of adsorption methods for pathogen elimination. We proposed a biochar functionalization strategy involving ε-polylysine (PLL), a bio-macromolecular poly(amino acid)s with variable folding conformations, as a \"pathogen gripper\" on biochar. PLL was successfully bridged onto biochar via polydopamine (PDA) crosslinking. The extension of electropositive side chains within PLL enables the capture of both nanoscale viruses and micrometer-scale bacteria in water, achieving excellent removal performances. This functionalized biochar was tentatively incorporated into ultrafiltration (UF) system, to achieve effective and controllable adsorption and retention of pathogens, and to realize the transfer of pathogens from membrane surface/pore to biochar surface as well as flushing water. The biochar-amended UF systems presents complete retention (∼7 LRV) and hydraulic elution of pathogens into membrane flushing water. Improvements in removal of organics and anti-fouling capability were observed, indicating the broken trade-off in UF pathogen removal dependent on irreversible fouling. Chemical characterizations revealed adsorption mechanisms encompassing electrostatic/hydrophobic interactions, pore filling, electron transfer, chemical bonding and secondary structure transitions. Microscopic and mechanical analyses validated the mechanisms for rapid adsorption and pathogen lysis. Low-concentration alkaline solution for used biochar regeneration, facilitated the deprotonation and transformation of PLL side chain to folded structures (α-helix/β-sheet). Biochar regeneration process also promoted the effective detachment/inactivation of pathogens and protection of functional groups on biochar, corroborated by physicochemical inspection and molecular dynamics simulation. The foldability of poly(amino acid)s acting like dynamic arms, significantly contributed to pathogen capture/desorption/inactivation and biochar regeneration. This study also inspires future investigation for performances of UF systems amended by poly(amino acid)s-functionalized biochar under diverse pressure, temperature, reactive oxygen species of feeds and chemical cleaning solutions, with far-reaching implications for public health, environmental applications of biochar, and UF process improvement.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    生物炭是一种很有前途的去除水中Cd的吸附剂,而处理耗尽的富含Cd的生物炭仍然是一个挑战。在这项研究中,热解用于在600-900°C的N2和CO2气氛下处理耗尽的生物炭,并确定了热解过程中Cd的命运和高价值产品的特性。结果表明,较高的温度和CO2气氛有利于Cd的挥发。根据毒性特征浸出程序(TCLP)结果,两种气氛下的热解处理提高了Cd的稳定性,在高温(>800°C)下获得的再生生物炭的浸出Cd浓度低于1mg/L。与原始生物炭相比,再生的生物炭表现出更高的碳含量和pH,而氧气和氢气的含量下降,并表现出良好的吸附性能(35.79mg/g)。大气在改变生物炭性质和合成气组成中起着重要作用。N2气氛促进了CH4的产生,而CO2气氛增加了CO的比例。这些结果表明,热解可以是处理和再利用耗尽的生物炭吸附剂的一种有价值且环境友好的策略。
    Biochar is a promising sorbent for Cd removal from water, while the disposal of the exhausted Cd-enriched biochar remains a challenge. In this study, pyrolysis was employed to treat the exhausted biochar under N2 and CO2 atmospheres at 600-900 °C, and the fate of Cd during pyrolysis and characteristics of high-valued products were determined. The results indicated that higher temperature and CO2 atmosphere favored the volatilization of Cd. Based on the toxicity characteristic leaching procedure (TCLP) results, the pyrolysis treatment under both atmospheres enhanced the stability of Cd, and the leached Cd concentration of regenerated biochar obtained at high temperatures (>800 °C) was lower than 1 mg/L. Compared with the pristine biochar, the regenerated biochar demonstrated higher carbon content and pH, whereas the contents of oxygen and hydrogen declined, and exhibited promising sorption properties (35.79 mg/g). The atmosphere played an important role in modifying biochar properties and syngas composition. The N2 atmosphere facilitated CH4 production, whereas the CO2 atmosphere increased the proportion of CO. These results implied that pyrolysis can be a valuable and environmental-friendly strategy for the treatment and reuse of exhausted biochar sorbent.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    通过简单的水热法制备了可再生的三金属尖晶石装饰的生物炭吸附剂(MZF-BC),以去除四环素。研究了MZF-BC的理化性质。具有中孔(〜7.6nm)和大孔(〜50nm)的混合孔结构的MZF-BC具有最大的四环素吸附能力,达到142.4mgg-1。通过对吸附动力学的研究,等温线和关键影响因素,发现MZF-BC在四环素上的吸附主要是多层效应,孔隙填充的初始吸附行为与氢键和π-π堆积有关。此外,MZF-BC通过驱动类Fenton催化作为液相中的自清洁过程而表现出优异的再生能力。这项研究有助于对制药废水处理中吸附有机污染物后生物炭基吸附剂的原位再生有新的认识。
    A renewable tri-metallic spinel decorated biochar adsorbent (MZF-BC) was fabricated by a facile hydrothermal method and to remove tetracycline. The physicochemical properties of MZF-BC were well studied. MZF-BC with a hybrid pore structure of mesopores (~7.6 nm) and macropores (~50 nm) has the maximum tetracycline adsorption capacity reaching 142.4 mg g-1. Through the study of adsorption kinetics, isotherms and key influencing factors, it was found that MZF-BC adsorption on tetracycline was primarily multi-layer effect with the initial adsorption behavior of pore filling associated with hydrogen bonding and π-π stacking. Furthermore, the MZF-BC performs excellent regeneration ability by driving Fenton-like catalysis as the self-cleaning process in the liquid phase. This study contributes to a new insight into the in-situ regeneration of biochar-based adsorbents after adsorbing organic pollutants in pharmaceutical wastewater treatment.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

公众号