Bio-inspiration

生物灵感
  • 文章类型: Journal Article
    探索哺乳动物体内的神经元如何与植入物的人工界面相互作用,可用于了解基本细胞行为并完善医疗应用。对于基础和应用研究,在与非自然界面相互作用的过程中,确定鼓励神经元保持其自然行为的条件是至关重要的。我们先前的研究量化了当树突偏离其自然分形几何时神经元连通性的恶化。分形共振提出,如果植入物的电极几何形状与神经元的分形几何形状相匹配,则神经元将表现出增强的连通性。这里,我们使用体外成像来量化小鼠视网膜神经元的分形几何形状,并显示它们在与电极相互作用期间发生变化。我们的结果表明,了解神经元分形特性的这些变化对于分形共振在体内哺乳动物系统中有效至关重要。
    Exploring how neurons in the mammalian body interact with the artificial interface of implants can be used to learn about fundamental cell behavior and to refine medical applications. For fundamental and applied research, it is crucial to determine the conditions that encourage neurons to maintain their natural behavior during interactions with non-natural interfaces. Our previous investigations quantified the deterioration of neuronal connectivity when their dendrites deviate from their natural fractal geometry. Fractal resonance proposes that neurons will exhibit enhanced connectivity if an implant\'s electrode geometry is matched to the fractal geometry of the neurons. Here, we use in vitro imaging to quantify the fractal geometry of mouse retinal neurons and show that they change during interaction with the electrode. Our results demonstrate that it is crucial to understand these changes in the fractal properties of neurons for fractal resonance to be effective in the in vivo mammalian system.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    决策系统允许人工代理适应他们的行为,取决于他们从环境和内部过程中感知到的信息。人类拥有独特的决策能力,适应当前形势,预测未来的挑战。具有模仿人类的自适应和预期决策的自主机器人可以为机器人带来用户更容易理解的技能。人类的决定高度依赖于多巴胺,一种调节动机和奖励的大脑物质,承认积极和消极的情况。考虑到最近有关多巴胺在人脑中的作用及其对决策和动机行为的影响的神经科学研究,本文提出了一个基于多巴胺如何驱动人类动机和决策的模型。该模型允许机器人在动态环境中自主表现,学习最佳行动选择策略并预测未来的奖励。结果显示了模型在五个场景中的性能,强调多巴胺水平如何根据机器人的情况和刺激感知而变化。此外,我们展示了该模型集成到迷你社交机器人中,以提供有关多巴胺水平如何驱动有动机的自主行为的见解,从而调节机器人中模拟的受生物启发的内部过程。
    Decision-making systems allow artificial agents to adapt their behaviours, depending on the information they perceive from the environment and internal processes. Human beings possess unique decision-making capabilities, adapting to current situations and anticipating future challenges. Autonomous robots with adaptive and anticipatory decision-making emulating humans can bring robots with skills that users can understand more easily. Human decisions highly depend on dopamine, a brain substance that regulates motivation and reward, acknowledging positive and negative situations. Considering recent neuroscience studies about the dopamine role in the human brain and its influence on decision-making and motivated behaviour, this paper proposes a model based on how dopamine drives human motivation and decision-making. The model allows robots to behave autonomously in dynamic environments, learning the best action selection strategy and anticipating future rewards. The results show the model\'s performance in five scenarios, emphasising how dopamine levels vary depending on the robot\'s situation and stimuli perception. Moreover, we show the model\'s integration into the Mini social robot to provide insights into how dopamine levels drive motivated autonomous behaviour regulating biologically inspired internal processes emulated in the robot.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    重量轻,薄度,透明度,灵活性,绝缘是柔性电子器件基板的关键指标。常见的柔性基板通常是聚合物材料,但是它们的回收是一个压倒性的挑战。同时,纸基材由于其较差的机械和热稳定性而在实际应用中受到限制。然而,天然生物材料由于其有机-无机多尺度结构而具有优异的机械性能和多功能性,这激发了我们设计有机-无机纳米复合薄膜的灵感。为此,使用具有丰富亲水性官能团的纤维素纳米纤维来开发生物启发的多尺度膜以帮助分散羟基磷灰石纳米线。生物可持续薄膜的厚度仅为40μm,它具有独特的机械性能(强度:52.8MPa;韧性:0.88MJm-3)和优异的光学性能(透光率:80.0%;雾度:71.2%)。因此,这种薄膜作为柔性传感器的基底是最佳的,它可以通过无线蓝牙传输电容和电阻信号,对压力和湿度表现出超敏的反应(例如,以5000%的信号变化响应手指按压和以4000%的信号变化呼出的水蒸气)。因此,仿生多尺度有机-无机复合膜的综合性能在柔性电子器件中具有突出的前景,食品包装,塑料替代。
    Light weight, thinness, transparency, flexibility, and insulation are the key indicators for flexible electronic device substrates. The common flexible substrates are usually polymer materials, but their recycling is an overwhelming challenge. Meanwhile, paper substrates are limited in practical applications because of their poor mechanical and thermal stability. However, natural biomaterials have excellent mechanical properties and versatility thanks to their organic-inorganic multiscale structures, which inspired us to design an organic-inorganic nanocomposite film. For this purpose, a bio-inspired multiscale film was developed using cellulose nanofibers with abundant hydrophilic functional groups to assist in dispersing hydroxyapatite nanowires. The thickness of the biosustainable film is only 40 μm, and it incorporates distinctive mechanical properties (strength: 52.8 MPa; toughness: 0.88 MJ m-3) and excellent optical properties (transmittance: 80.0%; haze: 71.2%). Consequently, this film is optimal as a substrate employed for flexible sensors, which can transmit capacitance and resistance signals through wireless Bluetooth, showing an ultrasensitive response to pressure and humidity (for example, responding to finger pressing with 5000% signal change and exhaled water vapor with 4000% signal change). Therefore, the comprehensive performance of the biomimetic multiscale organic-inorganic composite film confers a prominent prospect in flexible electronics devices, food packaging, and plastic substitution.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    与医疗应用并行,探索神经元如何与人体植入物的人工界面相互作用,可以用来了解它们的基本行为。无论是基础研究还是应用研究,确定鼓励神经元在这些相互作用过程中保持其自然行为的条件很重要。以往的生物相容性研究主要集中在神经元-植入物界面的材料特性上,在这里,我们讨论了分形共振的概念-通过将植入物表面的分形几何形状与神经元的几何形状相匹配,可能出现有利的连通性特性的可能性。为了研究分形共振,我们首先确定神经元的分形程度以及这种分形对其功能的影响。通过分析大鼠海马神经元的三维图像,我们发现它们的枝晶在空间中分叉和编织的方式对于产生它们的分形行为很重要。通过对神经元连通性的变化以及相关的能量和材料成本进行建模,我们强调了神经元的分形维数是如何优化这些约束的。为了模拟神经元与植入物接口的相互作用,我们通过修改树突叉和编织模式来扭曲神经元模型,使其远离自然形态。我们发现小的偏差会引起分形维数的大变化,导致连通性和成本之间的平衡迅速恶化。我们建议植入物表面应该被图案化以匹配神经元的分形维数,允许它们在与植入物相互作用时保持其自然功能。
    In parallel to medical applications, exploring how neurons interact with the artificial interface of implants in the human body can be used to learn about their fundamental behavior. For both fundamental and applied research, it is important to determine the conditions that encourage neurons to maintain their natural behavior during these interactions. Whereas previous biocompatibility studies have focused on the material properties of the neuron-implant interface, here we discuss the concept of fractal resonance - the possibility that favorable connectivity properties might emerge by matching the fractal geometry of the implant surface to that of the neurons.To investigate fractal resonance, we first determine the degree to which neurons are fractal and the impact of this fractality on their functionality. By analyzing three-dimensional images of rat hippocampal neurons, we find that the way their dendrites fork and weave through space is important for generating their fractal-like behavior. By modeling variations in neuron connectivity along with the associated energetic and material costs, we highlight how the neurons\' fractal dimension optimizes these constraints. To simulate neuron interactions with implant interfaces, we distort the neuron models away from their natural form by modifying the dendrites\' fork and weaving patterns. We find that small deviations can induce large changes in fractal dimension, causing the balance between connectivity and cost to deteriorate rapidly. We propose that implant surfaces should be patterned to match the fractal dimension of the neurons, allowing them to maintain their natural functionality as they interact with the implant.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    生物材料和生物材料科学的研究已经建立;然而,令人惊讶的是,很少有知识被系统地转化为工程解决方案。为了加速发现和指导见解,开源自回归变换器大型语言模型(LLM),BioinspiredLLM,据报道。该模型用结构生物和生物启发材料领域的一千多篇同行评审文章的语料库进行了微调,可以提示召回信息,协助研究任务,并作为创造力的引擎。该模型已经证明,它能够准确地回忆有关生物材料的信息,并且随着推理能力的增强而进一步增强,以及使用检索增强生成(RAG)在生成过程中合并新数据,这也有助于回溯源,更新知识库,并连接知识领域。BioinspiredLLM还显示出有关生物材料设计的合理假设,对于以前从未明确研究过的材料也是如此。最后,该模型在与其他生成人工智能模型合作的工作流程中显示出令人印象深刻的希望,该工作流程可以重塑传统的材料设计过程。这种协作生成人工智能方法可以刺激和增强生物材料设计工作流程。生物材料处于多个科学领域的关键交叉点,而BioinspiredLLM等模型有助于连接知识领域。
    The study of biological materials and bio-inspired materials science is well established; however, surprisingly little knowledge is systematically translated to engineering solutions. To accelerate discovery and guide insights, an open-source autoregressive transformer large language model (LLM), BioinspiredLLM, is reported. The model is finetuned with a corpus of over a thousand peer-reviewed articles in the field of structural biological and bio-inspired materials and can be prompted to recall information, assist with research tasks, and function as an engine for creativity. The model has proven that it is able to accurately recall information about biological materials and is further strengthened with enhanced reasoning ability, as well as with Retrieval-Augmented Generation (RAG) to incorporate new data during generation that can also help to traceback sources, update the knowledge base, and connect knowledge domains. BioinspiredLLM also has shown to develop sound hypotheses regarding biological materials design and remarkably so for materials that have never been explicitly studied before. Lastly, the model shows impressive promise in collaborating with other generative artificial intelligence models in a workflow that can reshape the traditional materials design process. This collaborative generative artificial intelligence method can stimulate and enhance bio-inspired materials design workflows. Biological materials are at a critical intersection of multiple scientific fields and models like BioinspiredLLM help to connect knowledge domains.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    建立具有生物性能的新型有机纳米载体的“绿色”策略是纳米技术的现代趋势。这样,生物废物的价值化和使用生命系统开发多功能有机和生物纳米载体(OBN)已经彻底改变了纳米技术和生物医学领域。这篇论文是一篇关于OBN用于生物活性物质递送的全面综述,概述了过去二十年的报告。在第一部分,简要介绍了几类生物活性化合物及其治疗作用。广泛的部分致力于有机和生物纳米载体的主要类别。提出了有关生态设计和OBN命运的主要挑战,以克服一些与毒性相关的缺点。未来的方向和机会,并找到解决纳米载体相关问题的“绿色”解决方案,在本文的最后概述。我们认为,通过这次审查,我们将吸引读者的注意力,并将为新的解决方案/想法开辟新的视角,以发现更有效和“绿色”的方式来开发用于运输生物活性剂的新型生物载体纳米载体。
    \"Green\" strategies to build up novel organic nanocarriers with bioperformance are modern trends in nanotechnology. In this way, the valorization of bio-wastes and the use of living systems to develop multifunctional organic and biogenic nanocarriers (OBNs) have revolutionized the nanotechnological and biomedical fields. This paper is a comprehensive review related to OBNs for bioactives\' delivery, providing an overview of the reports on the past two decades. In the first part, several classes of bioactive compounds and their therapeutic role are briefly presented. A broad section is dedicated to the main categories of organic and biogenic nanocarriers. The major challenges regarding the eco-design and the fate of OBNs are suggested to overcome some toxicity-related drawbacks. Future directions and opportunities, and finding \"green\" solutions for solving the problems related to nanocarriers, are outlined in the final of this paper. We believe that through this review, we will capture the attention of the readers and will open new perspectives for new solutions/ideas for the discovery of more efficient and \"green\" ways in developing novel bioperformant nanocarriers for transporting bioactive agents.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    头足类动物已经进化出一种全柔软的皮肤,可以快速显示颜色以进行保护,捕食,或通信。在红外(IR)区域模拟这种变色能力的合成类似物的开发对于从软机器人技术,柔性显示器,动态温度调节系统,自适应红外伪装平台。然而,将类似组织的机械性能和快速红外调制能力集成到智能材料中仍然具有挑战性。这里,从头足类皮肤中汲取灵感,我们开发了一种全软自适应红外复合材料,可以在等轴拉伸时动态改变其红外外观。仿生复合材料完全由液态金属液滴和弹性弹性体的软材料制成,它们是头足类皮肤的色素和真皮层的类似物,分别。由外部施加的应变驱动,液态金属夹杂物在具有波纹表面的收缩液滴状态和具有相对光滑表面的膨胀薄片状态之间过渡,实现复合材料的IR反射率/发射率的动态变化,并最终导致可逆的IR适应。应变驱动的柔性IR显示器和可以动态操纵其IR外观的气动驱动的软设备被证明是这种材料在新兴的自适应软电子器件中的适用性的示例。
    Cephalopods have evolved an all-soft skin that can rapidly display colors for protection, predation, or communication. Development of synthetic analogs to mimic such color-changing abilities in the infrared (IR) region is pivotal to a variety of technologies ranging from soft robotics, flexible displays, dynamic thermoregulatory systems, to adaptive IR disguise platforms. However, the integration of tissue-like mechanical properties and rapid IR modulation ability into smart materials remains challenging. Here, by drawing inspiration from cephalopod skin, we develop an all-soft adaptive IR composite that can dynamically change its IR appearance upon equiaxial stretching. The biomimetic composite is built entirely from soft materials of liquid metal droplets and elastic elastomer, which are analogs of chromatophores and dermal layer of cephalopod skin, respectively. Driven by externally applied strains, the liquid metal inclusions transition between a contracted droplet state with corrugated surface and an expanded platelet state with relatively smooth surface, enabling dynamic variations in the IR reflectance/emissivity of the composite and ultimately resulting in reversible IR adaption. Strain-actuated flexible IR displays and pneumatically-driven soft devices that can dynamically manipulate their IR appearance are demonstrated as examples of the applicability of this material in emerging adaptive soft electronics.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Editorial
    暂无摘要。
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    人类味觉系统使用两种不同的信号传导途径基于其不同的离子或非离子性质来识别咸/酸或甜味促味剂。这表明进化有利地选择了这种检测二元论。类似地,这项工作在这里构建了生物启发刺激响应水凝胶,以识别基于两种不同反应的模型咸/酸或甜的味道,也就是说,电气和体积响应。两性离子磺基甜菜碱N-(3-磺丙基)-N-(甲基丙烯酰氧基乙基)-N的不同组成,N-二甲基铵甜菜碱(DMAPS)和非离子甲基丙烯酸2-羟乙酯(HEMA)共聚以探索凝胶化条件。使用电和视觉去溶胀观察来探索添加模型促味剂分子后的水凝胶响应。除了挑战电化学阻抗谱测量,幼稚的万用表电气特性进行,走向容易的适用性。离子模型分子,例如,氯化钠和乙酸,与DMAPS基团静电相互作用,而非离子分子,例如,D(-)果糖,通过氢键与HEMA相互作用。模型助推器会引起电响应和体积响应的复杂组合,然后作为机器学习算法的输入引入。测试这种经过训练的双重反应方法的保真度以用于更一般的味道识别。这项工作设想,简单的双电/体积水凝胶响应与机器学习相结合,为未来人工味觉识别的仿生设计提供了一种通用的生物启发途径。在应用中需要充分。
    Human gustatory system recognizes salty/sour or sweet tastants based on their different ionic or nonionic natures using two different signaling pathways. This suggests that evolution has selected this detection dualism favorably. Analogically, this work constructs herein bioinspired stimulus-responsive hydrogels to recognize model salty/sour or sweet tastes based on two different responses, that is, electrical and volumetric responsivities. Different compositions of zwitter-ionic sulfobetainic N-(3-sulfopropyl)-N-(methacryloxyethyl)-N,N-dimethylammonium betaine (DMAPS) and nonionic 2-hydroxyethyl methacrylate (HEMA) are co-polymerized to explore conditions for gelation. The hydrogel responses upon adding model tastant molecules are explored using electrical and visual de-swelling observations. Beyond challenging electrochemical impedance spectroscopy measurements, naive multimeter electrical characterizations are performed, toward facile applicability. Ionic model molecules, for example, sodium chloride and acetic acid, interact electrostatically with DMAPS groups, whereas nonionic molecules, for example, D(-)fructose, interact by hydrogen bonding with HEMA. The model tastants induce complex combinations of electrical and volumetric responses, which are then introduced as inputs for machine learning algorithms. The fidelity of such a trained dual response approach is tested for a more general taste identification. This work envisages that the facile dual electric/volumetric hydrogel responses combined with machine learning proposes a generic bioinspired avenue for future bionic designs of artificial taste recognition, amply needed in applications.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Review
    目前,在生物学的跨学科工作领域,软机器人社区一直在大力推动了解水力调节器的运动和可操作性。这篇评论旨在将肌肉平衡器假说扩展到新的结构,包括植物,并在新的建模上向水力调节器社区引入创新技术,模拟,模仿,并观察液压调节器的运动方法。这些方法的范围从kirigami的想法,折纸,以及用于模拟创建的编织,以利用强化学习来控制受生物启发的软机器人系统。现在通过建模可以理解,不同的机制可以抑制传统的液压调节器运动,如皮肤,鼻孔,或有鞘的分层肌肉壁。这次审查的影响将突出这些机制,包括不对称,并讨论了解它们的运动的关键下一步,以及具有水力调节结构的物种如何控制这种复杂的运动,突出2022年1月至2022年12月的工作。
    Currently, in the field of interdisciplinary work in biology, there has been a significant push by the soft robotic community to understand the motion and maneuverability of hydrostats. This Review seeks to expand the muscular hydrostat hypothesis toward new structures, including plants, and introduce innovative techniques to the hydrostat community on new modeling, simulating, mimicking, and observing hydrostat motion methods. These methods range from ideas of kirigami, origami, and knitting for mimic creation to utilizing reinforcement learning for control of bio-inspired soft robotic systems. It is now being understood through modeling that different mechanisms can inhibit traditional hydrostat motion, such as skin, nostrils, or sheathed layered muscle walls. The impact of this Review will highlight these mechanisms, including asymmetries, and discuss the critical next steps toward understanding their motion and how species with hydrostat structures control such complex motions, highlighting work from January 2022 to December 2022.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

公众号