BiFC

BiFC
  • 文章类型: Journal Article
    本研究调查了植物盐胁迫反应的分子机制,重点研究OsNAM2的调节作用,OsNAM2是受植物生长促进根瘤菌解淀粉芽孢杆菌(SN13)影响的基因。该研究探讨了SN13调节的OsNAM2如何通过生理,生物化学,和分子分析。OsNAM2的过表达,尤其是SN13接种,提高发芽,幼苗生长,根长,与野生型植物相比,在高NaCl浓度下的生物量,表明协同效应。OsNAM2过表达提高了相对含水量,减少电解质泄漏和丙二醛积累,增加脯氨酸含量,表明更好的膜完整性和应力耐力。此外,SN13和OsNAM2过表达调节参与糖酵解的必需代谢基因,磷酸戊糖途径,和三羧酸循环,促进代谢调整对于盐应激适应至关重要。OsNAM2与SUS的相互作用,由SN13促进,表明蔗糖代谢效率提高,为保护性反应提供底物。此外,OsNAM2通过与AFP2等显著的蛋白质-蛋白质相互作用在ABA信号通路中起调节作用。这项研究强调了SN13反应性OsNAM2和关键信号通路之间的复杂相互作用。提出通过有针对性的遗传和微生物干预提高作物耐盐性的策略。
    This study investigates the molecular mechanisms underlying salt stress responses in plants, focusing on the regulatory roles of OsNAM2, a gene influenced by the plant growth-promoting rhizobacterium Bacillus amyloliquefaciens (SN13). The study examines how SN13-modulated OsNAM2 enhances salt tolerance in Arabidopsis through physiological, biochemical, and molecular analyses. Overexpression of OsNAM2, especially with SN13 inoculation, improves germination, seedling growth, root length, and biomass under high NaCl concentrations compared to wild-type plants, indicating a synergistic effect. OsNAM2 overexpression enhances relative water content, reduces electrolyte leakage and malondialdehyde accumulation, and increases proline content, suggesting better membrane integrity and stress endurance. Furthermore, SN13 and OsNAM2 overexpression modulates essential metabolic genes involved in glycolysis, the pentose phosphate pathway, and the tricarboxylic acid cycle, facilitating metabolic adjustments crucial for salt stress adaptation. The interaction of OsNAM2 with SUS, facilitated by SN13, suggests enhanced sucrose metabolism efficiency, providing substrates for protective responses. Additionally, OsNAM2 plays a regulatory role in the ABA signaling pathway through significant protein-protein interactions like with AFP2. This study highlights the intricate interplay between SN13-responsive OsNAM2 and key signaling pathways, suggesting strategies for enhancing crop salt tolerance through targeted genetic and microbial interventions.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    基于重折叠的双分子荧光互补(BiFC)已成为识别蛋白质相互作用的重要体内技术。在提高BiFC的检测能力方面已经取得了重大改进,然而,对蛋白质表达水平的检测关注较少。在这里,我们展示了一种改进的方法来鉴定蛋白质相互作用的开发和验证,该方法结合了基于目标蛋白质的双顺反子表达和由自切割肽分离的荧光蛋白的表达控制。该方法提供了对正相互作用的鲁棒识别,并且更可靠地识别了不存在相互作用。我们还显示了酵母双杂交(Y2H)中早期鉴定的非相互作用对在体内相互作用。
    在线版本包含补充材料,可在10.1007/s12298-024-01477-y获得。
    Refolding based Bimolecular Fluorescence Complementation (BiFC) has emerged as an important in vivo technique to identify protein interactions. Significant improvements have been made to enhance the detection capacities of BiFC, however less attention has been paid to the detection of expression levels of proteins. Here we demonstrate development and validation of an improved method to identify protein interactions that incorporates an expression control based on bicistronic expression of the protein of interest and a fluorescent protein separated by a self-cleaving peptide. This method gives robust identification of positive interactions and more reliably identifies absence of interactions. We also show an earlier identified non-interacting pair in yeast two-hybrid (Y2H) to be interacting in vivo.
    UNASSIGNED: The online version contains supplementary material available at 10.1007/s12298-024-01477-y.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    GRAM(葡萄糖基转移酶类GTP酶激活剂和Myotubularin)结构域编码蛋白在植物生长和对生物胁迫的反应中起关键作用。然而,它们对非生物胁迫反应的影响仍然是个谜。这项研究揭示了一种新的细胞核定位的OsGRAM57,一种GRAM蛋白编码基因及其在使用拟南芥作为模型植物增强盐胁迫耐受性方面的深远调节功能。OsGRAM57-OEX(OsGRAM57-OEX)系表现出耐盐性的显著增强,调制生理,生物化学,K+/Na+比值,和酶指数与其野生型(WT)相比。此外,OsGRAM57-OEX幼苗显示内源性脱落酸(ABA)和其他植物激素的水平增加,而代谢谱显示碳水化合物代谢增强。深入研究ABA信号通路,OsGRAM57成为中央监管机构,协调对盐应激反应至关重要的基因的表达,碳水化合物代谢,和ABA信号。观察到的与靶基因的相互作用和反式激活测定为OsGRAM57的关键作用提供了额外的支持。这些发现强调了OsGRAM57对ABA途径的积极影响,并肯定了其通过ABA依赖性途径和微调的碳水化合物代谢增强耐盐性的能力。总之,这项新的研究揭示了以前未被发现的OsGRAM57在拟南芥非生物胁迫反应中的调节作用,在不利的环境条件下提供有希望的方法来加强植物的恢复能力。
    GRAM (Glucosyltransferases-like GTPase activators and Myotubularin) domain-encoding proteins play pivotal roles in plant growth and responses to biotic stresses. Yet, their influence on abiotic stress responses has remained enigmatic. This study unveils a novel nucleus-localized OsGRAM57, a GRAM protein-encoding gene and its profound regulatory functions in enhancing salt stress tolerance using Arabidopsis thaliana as a model plant. OsGRAM57-OEX (OsGRAM57-OEX) lines displayed significant enhancement in salt tolerance, modulated physiological, biochemical, K+/Na+ ratios, and enzymatic indices as compared to their wild-type (WT). Furthermore, OsGRAM57-OEX seedlings demonstrate increased levels of endogenous abscisic acid (ABA) and other phytohormones, while metabolic profiling revealed enhanced carbohydrate metabolism. Delving into the ABA signaling pathway, OsGRAM57 emerged as a central regulator, orchestrating the expression of genes crucial for salt stress responses, carbohydrate metabolism, and ABA signaling. The observed interactions with target genes and transactivation assays provided additional support for OsGRAM57\'s pivotal role. These findings underscore OsGRAM57\'s positive influence on the ABA pathway and affirm its capacity to enhance salt tolerance through an ABA-dependent pathway and fine-tuned carbohydrate metabolism. In summary, this new study reveals the previously undiscovered regulatory roles of OsGRAM57 in Arabidopsis abiotic stress responses, offering promising ways for strengthening plant resilience in the face of adverse environmental conditions.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    双分子荧光互补(BiFC)是研究活细胞中蛋白质-蛋白质相互作用的强大工具。通过将相互作用的蛋白质融合到荧光蛋白片段上,BiFC允许可视化蛋白质复合物的空间定位模式。该方法已适用于不同生物体中的多种表达系统,并广泛用于研究植物细胞中的蛋白质相互作用。农杆菌介导的用于烟草中BiFC测定的瞬时表达方案(N。benthamiana)叶细胞被广泛使用,但在这一章中,提出了一种使用拟南芥原生质体进行BiFC测定的方法。
    Bimolecular fluorescence complementation (BiFC) is a powerful tool for studying protein-protein interactions in living cells. By fusing interacting proteins to fluorescent protein fragments, BiFC allows visualization of spatial localization patterns of protein complexes. This method has been adapted to a variety of expression systems in different organisms and is widely used to study protein interactions in plant cells. The Agrobacterium-mediated transient expression protocol for BiFC assays in Nicotiana benthamiana (N. benthamiana) leaf cells is widely used, but in this chapter, a method for BiFC assay using Arabidopsis thaliana protoplasts is presented.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    转录因子(TF)通过识别基因组中的特定靶增强子来调节基因表达。TFs的DNA结合和调节活性取决于其他蛋白质伴侣的存在,导致形成多功能和动态多聚体蛋白复合物。可视化细胞核中的这些蛋白质-蛋白质相互作用(PPIs)是解密体内TF特异性的分子线索的关键。在过去的几年里,双分子荧光互补(BiFC)已在多个模型系统中开发并应用于不同类型的PPI的分析。特别是,在分析活果蝇胚胎细胞核中具有数百个TF的PPI时,已应用BiFC。然而,PPIs在特定靶增强子或感兴趣的基因组区域水平的可视化等待着可以与BiFC结合的DNA标记方法的出现.这里,我们提出了一种称为BiFOR的新实验策略,该策略基于BiFC与细菌锚定DNA标记系统的偶联。我们证明BiFOR能够精确定量果蝇唾液腺核中目标增强剂上特定二聚体蛋白质复合物的富集。鉴于其多功能性和灵敏度,在果蝇发育过程中,BiFOR可以更广泛地应用于其他组织。我们的工作为该策略的未来应用奠定了实验基础。
    Transcription factors (TFs) regulate gene expression by recognizing specific target enhancers in the genome. The DNA-binding and regulatory activity of TFs depend on the presence of additional protein partners, leading to the formation of versatile and dynamic multimeric protein complexes. Visualizing these protein-protein interactions (PPIs) in the nucleus is key for decrypting the molecular cues underlying TF specificity in vivo. Over the last few years, Bimolecular Fluorescence Complementation (BiFC) has been developed in several model systems and applied in the analysis of different types of PPIs. In particular, BiFC has been applied when analyzing PPIs with hundreds of TFs in the nucleus of live Drosophila embryos. However, the visualization of PPIs at the level of specific target enhancers or genomic regions of interest awaits the advent of DNA-labelling methods that can be coupled with BiFC. Here, we present a novel experimental strategy that we have called BiFOR and that is based on the coupling of BiFC with the bacterial ANCHOR DNA-labelling system. We demonstrate that BiFOR enables the precise quantification of the enrichment of specific dimeric protein complexes on target enhancers in Drosophila salivary gland nuclei. Given its versatility and sensitivity, BiFOR could be applied more widely to other tissues during Drosophila development. Our work sets up the experimental basis for future applications of this strategy.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    背景:双分子荧光互补(BiFC)测定通常用于研究蛋白质-蛋白质相互作用。虽然已经开发了几种BiFC检测系统,有一个有限的研究集中在使用激光扫描共聚焦显微镜(LSCM)技术观察原生质体。与原始细胞状态相比,原生质体更容易受到损伤和不稳定的影响,这归因于它们所经历的准备处理,这使得研究人员在LSCM下观察期间操纵它们变得具有挑战性。因此,在BiFC分析中正确有效地利用显微镜技术至关重要。
    结果:当目标荧光较弱时,原生质体中叶绿体颗粒的自发荧光会干扰位于核区的BiFC信号的检测。光谱分析表明,叶绿体自发荧光可以被各种类型的激光激发,在大约660nm处观察到最高的荧光信号。此外,我们对不同移液管吸头对原生质体样品完整性的影响的调查表明,利用具有较大开口的切割吸头可以减轻细胞破损。我们介绍了用于研究原生质体BiFC的LSCM技术的工作流程,并讨论了样品制备和图像捕获中涉及的显微镜操作。
    结论:当BiFC信号微弱时,它们可能受到叶绿体自发荧光的影响。然而,如果使用得当,叶绿体的自发荧光可以作为有效区分其他信号的极好的内部标记。结合其他发现,本研究可为研究者进行BiFC检测及相关研究提供有价值的参考。
    BACKGROUND: The bimolecular fluorescence complementation (BiFC) assay is commonly used for investigating protein-protein interactions. While several BiFC detection systems have been developed, there is a limited amount of research focused on using laser scanning confocal microscope (LSCM) techniques to observe protoplasts. Protoplasts are more susceptible to damage and instability compared to their original cell state due to the preparation treatments they undergo, which makes it challenging for researchers to manipulate them during observation under LSCMs. Therefore, it is crucial to utilize microscope techniques properly and efficiently in BiFC assays.
    RESULTS: When the target fluorescence is weak, the autofluorescence of chloroplast particles in protoplasts can interfere with the detection of BiFC signals localized in the nuclear region. Spectrum analysis revealed that chloroplast autofluorescence can be excited by lasers of various types, with the highest fluorescence signal observed at around 660 nm. Furthermore, our investigation into the impact of different pipette tips on the integrity of protoplast samples indicated that the utilization of cut tips with larger openings can mitigate cell breakage. We presented a workflow of LSCM techniques for investigating protoplast BiFC and discussed the microscopic manipulation involved in sample preparation and image capturing.
    CONCLUSIONS: When the BiFC signals are weak, they may be affected by chloroplast autofluorescence. However, when used properly, the autofluorescence of chloroplasts can serve as an excellent internal marker for effectively distinguishing other signals. In combination with other findings, this study can provide valuable reference for researchers conducting BiFC assays and related studies.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    活细胞中多蛋白复合物基因工程的一种有希望的方法涉及设计和重建两种缺乏天然亲和力的蛋白质之间的相互作用。类囊体嵌入的多蛋白复合物执行植物光合作用的光反应,但是他们的工程仍然具有挑战性,可能是由于难以将异源膜结合蛋白准确靶向类囊体的各个亚区。在这项研究中,我们开发了一种基于泛素的模块(Nub-Cub),能够指导缺乏天然亲和力的两种叶绿体蛋白之间的体内相互作用。我们将该模块应用于遗传修饰类囊体多蛋白复合物。我们证明了Nub-Cub模块在模型生物拟南芥中的功能。使用这个系统,我们通过异位连接PSII的外在亚基成功地修饰了光系统II(PSII)复合物,PsbTn1,到CP26-PSII天线系统的组件。令人惊讶的是,植物中CP26和PsbTn1之间的这种强制性相互作用损害了PSII中电子传输的效率,并出乎意料地导致了叶片发育的明显缺陷。我们的研究不仅提供了修饰嵌入类囊体膜中的多蛋白复合物的一般策略,而且还揭示了两种蛋白质之间没有天然相互作用的可能相互作用。
    A promising approach for the genetic engineering of multiprotein complexes in living cells involves designing and reconstructing the interaction between two proteins that lack native affinity. Thylakoid-embedded multiprotein complexes execute the light reaction of plant photosynthesis, but their engineering remains challenging, likely due to difficulties in accurately targeting heterologous membrane-bound proteins to various sub-compartments of thylakoids. In this study, we developed a ubiquitin-based module (Nub-Cub) capable of directing interactions in vivo between two chloroplast proteins lacking native affinities. We applied this module to genetically modify thylakoid multiprotein complexes. We demonstrated the functionality of the Nub-Cub module in the model organism Arabidopsis thaliana. Employing this system, we successfully modified the Photosystem II (PSII) complex by ectopically attaching an extrinsic subunit of PSII, PsbTn1, to CP26-a component of the antenna system of PSII. Surprisingly, this mandatory interaction between CP26 and PsbTn1 in plants impairs the efficiency of electron transport in PSII and unexpectedly results in noticeable defects in leaf development. Our study not only offers a general strategy to modify multiprotein complexes embedded in thylakoid membranes but it also sheds light on the possible interplay between two proteins without native interaction.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    双分子荧光互补(BiFC)是一种广泛用于研究蛋白质-蛋白质相互作用和确定蛋白质亚细胞定位的测定法。该技术涉及将感兴趣的蛋白质融合到荧光蛋白的单独结构域中,随后在细胞中瞬时表达。体内感兴趣的蛋白质之间的相互作用允许通过荧光显微镜观察的荧光的重建。BiFC在研究病毒和宿主蛋白之间的相互作用中特别有用。这里,我们描述了制备表达盒所涉及的步骤,这些表达盒允许表达与黄色荧光蛋白(YFP)的非荧光片段融合的目的蛋白,农杆菌转化,和本氏烟草叶片的农业浸润,以促进病毒蛋白与宿主蛋白的相互作用。最后,通过在共聚焦显微镜下分析叶片可以获得高分辨率图像。
    Bimolecular fluorescence complementation (BiFC) is an assay widely used for studying protein-protein interactions and determining the subcellular localization of proteins. This technique involves fusing the proteins of interest to separate structural domains of a fluorescent protein, followed by transient expression in cells. The interaction between the proteins of interest in vivo allows the reconstitution of the fluorescence that can be visualized by fluorescence microscopy. BiFC has been particularly useful in investigating the interactions between viral and host proteins. Here, we describe the steps involved in preparing expression cassettes that allow the expression of proteins of interest fused to nonfluorescent fragments of yellow fluorescent protein (YFP), Agrobacterium transformations, and agroinfiltration of Nicotiana benthamiana leaves to facilitate virus protein-host protein interactions. Finally, high-resolution images can be obtained by analyzing the leaves under a confocal microscope.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    蛋白质-蛋白质相互作用(PPI)的研究对于理解生物系统内的细胞过程至关重要。双分子荧光互补(BiFC)分析提供了用于使活细胞内的PPI可视化的方便方法。虽然一系列荧光蛋白已被引入BiFC系统,有新的荧光蛋白,以适应研究人员不断扩大的要求的需求不断增长。这项研究描述了将标记蓝色荧光蛋白2(TagBFP2)引入BiFC测定以验证两种蛋白质之间的相互作用,使用增强型黄色荧光蛋白(EYFP)作为阳性对照。两种荧光蛋白在这项研究中都表现出最佳性能。与EYFP相比,利用TagBFP2的BiFC系统产生了更高的信噪比,这促进了PPI信号与噪声的区别,并使其他荧光蛋白在BiFC测定中的应用成为可能。值得注意的是,在免疫荧光应用中使用荧光二级抗体或用荧光蛋白标记目的蛋白占据绿色或黄色通道。总的来说,本文介绍了一种非常简单的BiFC测定法,可靠,并且可复制,有能力在1周内完成。该方法既不需要昂贵的仪器也不需要高阶的技术技能。
    Investigations of protein-protein interactions (PPIs) are of paramount importance for comprehending cellular processes within biological systems. The bimolecular fluorescence complementation (BiFC) assay presents a convenient methodology for visualizing PPIs within live cells. While a range of fluorescent proteins have been introduced into the BiFC system, there is a growing demand for new fluorescent proteins to accommodate the expanding requirements of researchers. This study describes the introduction of Tagged blue fluorescent protein 2 (TagBFP2) into the BiFC assay to verify the interaction between two proteins, with Enhanced yellow fluorescent protein (EYFP) employed as a positive control. Both fluorescent proteins demonstrated optimal performance in this study. Compared to EYFP, the BiFC system utilizing TagBFP2 yielded a higher signal-to-noise ratio, which facilitated differentiation of the signal of PPIs from noise and enabled employment of other fluorescent proteins within the BiFC assay. Notably, the utilization of a fluorescent secondary antibody in immunofluorescence applications or the tagging of an interest protein with a fluorescent protein occupied the green or yellow channel. Overall, the present article introduces a BiFC assay that is highly straightforward, reliable, and replicable, with the ability to be completed within 1 week. This method requires neither expensive instrumentation nor technical skills of a high order.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    在这项研究中,我们通过将半乳糖/葡萄糖结合蛋白(GGBP)与由增强黄色荧光蛋白(eYFP)组成的N端大结构域(YN1-172)和C端小结构域(YC173-239)结合,开发了一种基于双分子荧光互补(BiFC)的高度敏感和特异性的甲型流感病毒(IAV)传感系统.基于GGBP的BiFC报告基因表现出荧光重建,这是GGBP构象变化的结果,当乳糖,它来自6'-硅脂乳糖,并用作神经氨酸酶(NA)的底物,在IAV存在下与GGBP结合。该系统显示出从1×100到1×107TCID50/mL的线性动态范围,对IAV(H1N1)的检出限为1.1×100TCID50/mL,表现出超高灵敏度。我们的系统在IAV的存在下表现出荧光强度增强,当暴露于NA缺陷病毒时,它显示微弱的荧光信号,例如RSVA,RSVB,腺病毒和鼻病毒,从而指示对IAV检测的选择性应答。总的来说,我们的系统提供了一个简单的,基于BiFC的高灵敏度和特异性IAV检测平台,能够检测配体诱导的蛋白质构象变化,消除了对病毒培养或RNA提取过程的需要。
    In this study, we developed a highly sensitive and specific bimolecular fluorescence complementation (BiFC)-based influenza A virus (IAV)-sensing system by combining a galactose/glucose-binding protein (GGBP) with an N-terminal large domain (YN1-172) and a C-terminal small domain (YC173-239) made up of enhanced yellow fluorescence protein (eYFP). The GGBP-based BiFC reporter exhibits the fluorescence reconstitution as a result of conformational changes in GGBP when lactose, which was derived from 6\'-silalyllactose and used as a substrate for neuraminidase (NA), binds to GGBP in the presence of IAV. The system showed a linear dynamic range extending from 1 × 100 to 1 × 107 TCID50/mL, and it had a detection limit of 1.1 × 100 TCID50/mL for IAV (H1N1), demonstrating ultra-high sensitivity. Our system exhibited fluorescence intensity enhancements in the presence of IAV, while it displayed weak fluorescence signals when exposed to NA-deficient viruses, such as RSV A, RSV B, adenovirus and rhinovirus, thereby indicating selective responses for IAV detection. Overall, our system provides a simple, highly sensitive and specific IAV detection platform based on BiFC that is capable of detecting ligand-induced protein conformational changes, obviating the need for virus culture or RNA extraction processes.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

公众号