Bacterial membrane

细菌膜
  • 文章类型: Journal Article
    对抗抗微生物耐药性的需求变得越来越紧迫。在这里,我们研究了一种小型阳离子剂的工作机理,N-烷基酰胺3d,通过常规和高速原子力显微镜。我们显示N-烷基酰胺3d与金黄色葡萄球菌膜相互作用,它改变了脂质结构域的组织和动力学。在这个初始步骤之后,抗菌剂的超分子结构逐渐附着在受影响的膜的顶部,完全覆盖它。这些结果表明,细菌膜中的侧向结构域可能比预期的更频繁地受到小的抗微生物剂的影响。同时,我们显示了N-烷基酰胺3d的新的双步活性,不仅破坏了侧膜组织,而且还有效地用聚集体覆盖了整个膜。这最后一步可以使膜从外部无法接近,并可能阻止活细菌的信号和废物处理。
    The need to combat antimicrobial resistance is becoming more and more pressing. Here we investigate the working mechanism of a small cationic agent, N-alkylamide 3d, by conventional and high-speed atomic force microscopy. We show that N-alkylamide 3d interacts with the membrane of Staphylococcus aureus, where it changes the organization and dynamics of lipid domains. After this initial step, supramolecular structures of the antimicrobial agent attach on top of the affected membrane gradually, covering it entirely. These results demonstrate that lateral domains in the bacterial membranes might be affected by small antimicrobial agents more often than anticipated. At the same time, we show a new dual-step activity of N-alkylamide 3d that not only destroys the lateral membrane organization but also effectively covers the whole membrane with aggregates. This final step could render the membrane inaccessible from the outside and possibly prevent signaling and waste disposal of living bacteria.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    磷脂酰胆碱(PC)对于根瘤菌和豆科植物之间的固氮共生至关重要。我们表征了豆科根瘤菌中的三种PC生物合成途径,并评估了它们对三叶草根瘤固氮的影响。在胆碱的存在下,PC合酶催化胞苷二磷酸-二酰甘油与胆碱的缩合以产生PC。在lyso-PC的存在下,酰基转移酶将这种单酰化磷脂酰化为PC。第三条途径依赖于磷脂N-甲基转移酶(Pmts),通过三轮甲基化依次甲基化磷脂酰乙醇胺(PE),通过中间体单甲基-PE和二甲基-PE产生PC。在豆科,至少有三个Pmts参与这个甲基化级联。为了阐明这些酶的功能,我们重组生产和生化特征。我们继续确定包含PC生物合成基因的单个和组合缺失的豆科R.leguminosarum突变菌株的磷脂谱。累积结果表明,PC的产生是通过多种酶的联合作用而发生的,每个都有不同的底物和产品特异性。甲基化途径成为PC生物合成的主要途径,我们确定了PmtS2,它催化所有三个甲基化步骤,作为负责为三叶草的功能性固氮共生提供足够PC量的酶。
    目的:了解共生固氮的分子机制对可持续农业具有重要意义。根瘤菌膜中磷脂磷脂酰胆碱(PC)的存在对于在豆科植物上建立生产性固氮根瘤至关重要。PC要求的原因未知。这里,我们采用豆科根瘤菌和三叶草作为有益的植物-微生物相互作用的模型系统。我们发现豆科念珠菌通过三种不同的途径产生PC。这些途径对PC形成的相对贡献是在一系列单一的,双,和三重突变菌株。对几种PC生物合成酶进行了纯化和生化表征。最重要的是,我们证明了豆科动物形成PC在固氮中的重要作用,并指出了植物与微生物相互作用所必需的特定酶。我们的研究为细菌PC的生物合成及其在生物固氮中的关键作用提供了深刻的见解。
    Phosphatidylcholine (PC) is critical for the nitrogen-fixing symbiosis between rhizobia and legumes. We characterized three PC biosynthesis pathways in Rhizobium leguminosarum and evaluated their impact on nitrogen fixation in clover nodules. In the presence of choline, a PC synthase catalyzes the condensation of cytidine diphosphate-diacylglycerol with choline to produce PC. In the presence of lyso-PC, acyltransferases acylate this mono-acylated phospholipid to PC. The third pathway relies on phospholipid N-methyltransferases (Pmts), which sequentially methylate phosphatidylethanolamine (PE) through three rounds of methylation, yielding PC via the intermediates monomethyl-PE and dimethyl-PE. In R. leguminosarum, at least three Pmts participate in this methylation cascade. To elucidate the functions of these enzymes, we recombinantly produced and biochemically characterized them. We moved on to determine the phospholipid profiles of R. leguminosarum mutant strains harboring single and combinatorial deletions of PC biosynthesis genes. The cumulative results show that PC production occurs through the combined action of multiple enzymes, each with distinct substrate and product specificities. The methylation pathway emerges as the dominant PC biosynthesis route, and we pinpoint PmtS2, which catalyzes all three methylation steps, as the enzyme responsible for providing adequate PC amounts for a functional nitrogen-fixing symbiosis with clover.
    OBJECTIVE: Understanding the molecular mechanisms of symbiotic nitrogen fixation has important implications for sustainable agriculture. The presence of the phospholipid phosphatidylcholine (PC) in the membrane of rhizobia is critical for the establishment of productive nitrogen-fixing root nodules on legume plants. The reasons for the PC requirement are unknown. Here, we employed Rhizobium leguminosarum and clover as model system for a beneficial plant-microbe interaction. We found that R. leguminosarum produces PC by three distinct pathways. The relative contribution of these pathways to PC formation was determined in an array of single, double, and triple mutant strains. Several of the PC biosynthesis enzymes were purified and biochemically characterized. Most importantly, we demonstrated the essential role of PC formation by R. leguminosarum in nitrogen fixation and pinpointed a specific enzyme indispensable for plant-microbe interaction. Our study offers profound insights into bacterial PC biosynthesis and its pivotal role in biological nitrogen fixation.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    在这项研究中,采用生物信息学和分子动力学模拟的组合来研究不同类别的抗微生物肽(AMP)到模型膜中的分配行为。主要目的是确定AMP的结构特征与其膜识别和早期分配机制之间的任何相关性。模拟结果揭示了不同结构类别的AMP之间不同的膜相互作用,特别是与脂质包装缺陷的产生和随后的相互作用有关。值得注意的是,具有无结构线圈构象的AMP会产生更多的深缺陷和浅缺陷,与其他类型的AMP相比,其尺寸更大。具有螺旋成分的AMP表现出最深的插入膜中。另一方面,具有显著百分比的β折叠的AMP倾向于吸附到膜表面上,这表明了一种潜在的独特的分区机制,归因于它们的结构刚性。这些发现突出了不同结构类别的AMP表现出的不同膜相互作用和分配机制。
    In this study, a combination of bioinformatics and molecular dynamics simulations is employed to investigate the partitioning behavior of different classes of antimicrobial peptides (AMPs) into model membranes. The main objective is to identify any correlations between the structural characteristics of AMPs and their membrane identification and early-stage partitioning mechanisms. The simulation results reveal distinct membrane interactions among the various structural classes of AMPs, particularly in relation to the generation and subsequent interaction with lipid packing defects. Notably, AMPs with a structure-less coil conformation generate a higher number of deep and shallow defects, which are larger in size compared to other classes of AMPs. AMPs with helical component demonstrated the deepest insertion into the membrane. On the other hand, AMPs with a significant percentage of beta sheets tend to adsorb onto the membrane surface, suggesting a potentially distinct partitioning mechanism attributed to their structural rigidity. These findings highlight the diverse membrane interactions and partitioning mechanisms exhibited by different structural classes of AMPs.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    许多因素有助于细菌膜稳定,包括脂质之间的空间效应,膜自发曲率,以及相邻分子数量的差异。本论坛概述了与膜曲率相关的物理化学特性,以及如何调整此参数以设计更有效的抗菌肽。
    Many factors contribute to bacterial membrane stabilization, including steric effects between lipids, membrane spontaneous curvature, and the difference in the number of neighboring molecules. This forum provides an overview of the physicochemical properties associated with membrane curvature and how this parameter can be tuned to design more effective antimicrobial peptides.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    探索新型抗菌药物和策略已成为对抗MRSA相关感染的关键。在这里,我们发现,膜破坏的再利用抗生素salifungin对MRSA具有优异的杀菌活性,耐药性的发展有限。此外,添加salefungin有效降低了临床抗生素对金黄色葡萄球菌的最低抑菌浓度。对机制的评估表明,salifungin使用亲水和亲脂基团与细菌膜相互作用来破坏H和K离子的水平,导致细菌质子动力的破坏,然后影响细菌的呼吸链和腺苷5'-三磷酸的功能,从而抑制磷脂酸的生物合成。此外,salefungin还显着抑制细菌生物膜的形成,并通过干扰细菌膜电位和抑制生物膜相关基因表达来消除已建立的细菌生物膜,甚至比临床抗生素更好。最后,在MRSA感染的动物模型中,salefungin的疗效与万古霉素相当甚至更好.总之,这些结果表明salifungin可能是治疗MRSA相关感染的潜在药物.
    Exploring novel antimicrobial drugs and strategies has become essential to the fight MRSA-associated infections. Herein, we found that membrane-disrupted repurposed antibiotic salifungin had excellent bactericidal activity against MRSA, with limited development of drug resistance. Furthermore, adding salifungin effectively decreased the minimum inhibitory concentrations of clinical antibiotics against Staphylococcus aureus. Evaluations of the mechanism demonstrated that salifungin disrupted the level of H+ and K+ ions using hydrophilic and lipophilic groups to interact with bacterial membranes, causing the disruption of bacterial proton motive force followed by impacting on bacterial the function of the respiratory chain and adenosine 5\'-triphosphate, thereby inhibiting phosphatidic acid biosynthesis. Moreover, salifungin also significantly inhibited the formation of bacterial biofilms and eliminated established bacterial biofilms by interfering with bacterial membrane potential and inhibiting biofilm-associated gene expression, which was even better than clinical antibiotics. Finally, salifungin exhibited efficacy comparable to or even better than that of vancomycin in the MRSA-infected animal models. In conclusion, these results indicate that salifungin can be a potential drug for treating MRSA-associated infections.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    增强临床上可用抗生素活性的化合物提供了补充解决方案,除了开发新型抗生素以快速出现耐多药革兰氏阴性菌(GNB)。我们试图鉴定增强多粘菌素B(PMB)的化合物,一种传统药物,已被恢复为治疗危及生命的GNB感染的最后一行,从而降低其在临床使用中的肾毒性和异质性耐药性。在这项研究中,我们发现了一种天然产物,血根碱(SA),这增强了PMB对抗GNB感染的功效。使用棋盘测定和体内时间杀伤曲线以及大肠杆菌在雌性CD-1小鼠体内诱导的鼠腹膜炎模型评估了SA与PMB的协同作用。SA辅助PMB在体外和体内加速细菌负荷的减少,改善感染动物的炎症反应和存活率。随后检测细胞内ATP水平,膜电位,和膜完整性表明SA增强了PMB的细菌破膜能力。代谢组学分析表明,抑制能量代谢,干扰核酸生物合成,阻断L-Ara4N相关的PMB抗性也可能有助于协同作用。本研究首次揭示了SA与PMB的协同作用及其机制,这突出了对抗GNB药物开发的进一步见解。
    Compounds that potentiate the activity of clinically available antibiotics provide a complementary solution, except for developing novel antibiotics for the rapid emergence of multidrug-resistant Gram-negative bacteria (GNB). We sought to identify compounds potentiating polymyxin B (PMB), a traditional drug that has been revived as the last line for treating life-threatening GNB infections, thus reducing its nephrotoxicity and heterogeneous resistance in clinical use. In this study, we found a natural product, sanguinarine (SA), which potentiated the efficacy of PMB against GNB infections. The synergistic effect of SA with PMB was evaluated using a checkerboard assay and time-kill curves in vivo and the murine peritonitis model induced by Escherichia coli in female CD-1 mice in vivo. SA assisted PMB in accelerating the reduction in bacterial loads both in vitro and in vivo, improving the inflammatory responses and survival rate of infected animals. The subsequent detection of the intracellular ATP levels, membrane potential, and membrane integrity indicated that SA enhanced the bacterial-membrane-breaking capacity of PMB. A metabolomic analysis showed that the inhibition of energy metabolism, interference with nucleic acid biosynthesis, and the blocking of L-Ara4N-related PMB resistance may also contribute to the synergistic effect. This study is the first to reveal the synergistic activity and mechanism of SA with PMB, which highlights further insights into anti-GNB drug development.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    稀土元素(REE)是许多现代技术中必不可少的成分,然而,它们的净化要么对环境有害,要么在经济上不可行。吸附,或者生物吸附,将REE添加到细菌细胞膜上,为传统的溶剂萃取方法提供了可持续的替代方法。但为了使基于生物吸附的稀土净化在经济上竞争,必须增强生物吸附位点的能力和特异性。尽管最近在表征REE生物吸附的遗传学方面取得了一些进展,细菌膜表面位点的多样性和复杂性使靶向基因工程变得困难。这里,我们建议使用多轮由MP6质粒诱导的体内随机诱变结合平板通量REE生物吸附筛选,以提高微生物生物吸附REE的能力和选择性。我们设计了一种纳氏弧菌菌株,与野生型相比,该菌株能够生物吸附210%以上的铯,并且在最轻的(镧)和最重的(wt)REE之间产生了高达50%的选择性改进。我们认为,我们在ABC转运蛋白中观察到的突变以及BAM外膜β-桶蛋白插入复合物中的非必需蛋白可能导致我们观察到的某些生物吸附变化,但几乎肯定不是全部。鉴于容易找到重要的生物吸附突变体,这些结果强调了有多少基因可能有助于生物吸附,以及随机诱变在识别感兴趣的基因和优化生物系统的任务的力量。
    Rare earth elements (REE) are essential ingredients in many modern technologies, yet their purification remains either environmentally harmful or economically unviable. Adsorption, or biosorption, of REE onto bacterial cell membranes offers a sustainable alternative to traditional solvent extraction methods. But in order for biosorption-based REE purification to compete economically, the capacity and specificity of biosorption sites must be enhanced. Although there have been some recent advances in characterizing the genetics of REE-biosorption, the variety and complexity of bacterial membrane surface sites make targeted genetic engineering difficult. Here, we propose using multiple rounds of in vivo random mutagenesis induced by the MP6 plasmid combined with plate-throughput REE-biosorption screening to improve a microbe\'s capacity and selectivity for biosorbing REE. We engineered a strain of Vibrio natriegens capable of biosorbing 210% more dysprosium compared to the wild-type and produced selectivity improvements of up to 50% between the lightest (lanthanum) and heaviest (lutetium) REE. We believe that mutations we observed in ABC transporters as well as a nonessential protein in the BAM outer membrane β-barrel protein insertion complex likely contribute to some─but almost certainly not all─of the biosorption changes we observed. Given the ease of finding significant biosorption mutants, these results highlight just how many genes likely contribute to biosorption as well as the power of random mutagenesis in identifying genes of interest and optimizing a biological system for a task.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    多重耐药细菌的出现和新型抗菌药物的缓慢开发导致了日益严重的全球健康危机。这里,我们确定了一种具有1-甲基-2,5-二苯基吡啶-1-鎓核的抗菌剂,MA220607,具有双重靶向作用机制(MOA),对革兰氏阳性细菌(MIC=0.062-2μg/mL)和革兰氏阴性细菌(MIC=0.5-4μg/mL)均表现出有效的杀伤活性。此外,我们的研究表明,MA220607可以阻止细菌生物膜的形成,这可能是低频电阻的原因。MOA研究表明,MA220607不仅促进了FtsZ蛋白的聚合,而且还增加了细菌膜的渗透性并改变了它们的质子梯度。此外,MA220607具有较低的溶血毒性,能显著抑制小鼠体内细菌的生长。分子动力学模拟表明,MA220607可以阻断FtsZ蛋白从时态(T)到松弛(R)状态的转变,从而扰乱了FtsZ蛋白的步进机制。总的来说,我们的研究结果表明,将靶向FtsZ蛋白和细菌细胞膜的双重机制整合到单个支架中,代表了开发新抗菌剂的一个有希望的方向.
    The emergence of multidrug-resistant bacteria and the slow development of new antibacterial agents have led to a growing global health crisis. Here, we identified an antibacterial agent possessing 1-methyl-2,5-diphenylpyridin-1-ium core, MA220607, with a dual-targeting mechanism of action (MOA), which exhibited effective killing activity against both Gram-positive (MIC = 0.062-2 μg/mL) and Gram-negative bacteria (MIC = 0.5-4 μg/mL). Moreover, our study revealed that MA220607 could block the formation of bacterial biofilm, which might be the reason for low frequency of resistance. MOA studies showed that MA220607 not only promoted FtsZ protein polymerization, but also increased the permeability of bacterial membranes and altered their proton gradients. In addition, MA220607 had low hemolytic toxicity and could significantly inhibit the growth of bacteria in mice. Molecular dynamics simulations demonstrated that MA220607 could block the transition from the tense (T) to relaxed (R) state of FtsZ protein, thereby perturbing the stepping mechanism of FtsZ protein. Overall, our findings suggest that integrating the dual mechanisms targeting FtsZ protein and cell membranes of bacteria into a single scaffold represents a promising direction for the development of new antibacterial agents.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    据报道,RavA-ViaA在氨基糖苷(AG)敏感性中起作用,但是机制仍然难以捉摸。这里,我们进行了竞争和存活实验,以确认ravA-viaA的缺失增加了革兰氏阴性病原体霍乱弧菌在有氧生长过程中对低和高AG浓度的耐受性。在这个物种中使用高通量策略,我们将Cpx和Zra2双组分系统确定为RavA-ViaA的新合作伙伴。我们证明Δravvia的AG耐受性需要存在这些膜应力传感双组分系统。我们建议,由于Cpx和Zra2膜应激反应系统的预激活状态,RavA-ViaA功能的删除有助于反应AG。我们还发现这些基因对万古霉素抗性的影响,我们表明,ravia功能的同时失活以及包膜应激反应系统会导致外膜透化。万古霉素主要用于革兰氏阳性,因为它穿过革兰氏阴性外膜的效率低。靶向ravA-viaA操纵子进行灭活可能是允许万古霉素摄取到耐多药革兰氏阴性细菌中的未来策略。重要提示先前发现RavA-ViaA复合物在厌氧条件下使大肠杆菌对氨基糖苷(AG)敏感,但机制未知.AG是以其对抗革兰氏阴性细菌的高效率而闻名的抗生素。为了阐明ravA-viaA基因的表达如何增加细菌对氨基糖苷类的易感性,我们旨在确定在没有RavA-ViaA的情况下增加耐受性所需的伙伴功能,在霍乱弧菌中。我们表明,在没有RavA-ViaA的情况下,需要膜应激反应系统Cpx和Zra2,对AGs的耐受性和外膜完整性。如果没有这些系统,Δravvia菌株的膜对抗生素万古霉素等外部试剂变得可渗透。
    OBJECTIVE: The RavA-ViaA complex was previously found to sensitize Escherichia coli to aminoglycosides (AGs) in anaerobic conditions, but the mechanism is unknown. AGs are antibiotics known for their high efficiency against Gram-negative bacteria. In order to elucidate how the expression of the ravA-viaA genes increases bacterial susceptibility to aminoglycosides, we aimed at identifying partner functions necessary for increased tolerance in the absence of RavA-ViaA, in Vibrio cholerae. We show that membrane stress response systems Cpx and Zra2 are required in the absence of RavA-ViaA, for the tolerance to AGs and for outer membrane integrity. In the absence of these systems, the ∆ravvia strain\'s membrane becomes permeable to external agents such as the antibiotic vancomycin.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    随着抗菌素耐药性(AMR)在全球范围内对人类健康的持续和日益增长的威胁,作为克服这一问题的替代策略,膜活性肽正在获得牵引力。膜包埋多药耐药(MDR)外排泵是膜活性肽的主要目标,因为它们是临床相关AMR感染的公认贡献者。这里,我们描述了一系列跨膜肽(TM),以靶向来自大肠杆菌的AcrAB-TolCMDR外排泵的AcrB组分的寡聚化基序。这些肽含有N-末端乙酰基-A-(Sar)3(肌氨酸;N-甲基甘氨酸)标签和C-末端赖氨酸标签-我们的实验室已经利用的设计策略来改善先前靶向TM的溶解性和特异性。虽然这些肽已被证明可用于防止AcrB介导的底物外排,这些肽与细菌膜结合并穿透细菌膜的机制仍然未知。在这项研究中,我们已经显示了肽疏水矩(μH)-在一个脂性α-螺旋的一面上浓缩疏水性的测量-驱动细菌膜透化和去极化,可能是通过带负电荷的POPG脂质的侧向相分离和脂质包装的破坏。我们的结果表明,肽μH是设计膜活性肽时的重要考虑因素,并且可能是TM包埋在细菌膜中时是否会以透化或非透化方式发挥作用的决定因素。
    With antimicrobial resistance (AMR) remaining a persistent and growing threat to human health worldwide, membrane-active peptides are gaining traction as an alternative strategy to overcome the issue. Membrane-embedded multi-drug resistant (MDR) efflux pumps are a prime target for membrane-active peptides, as they are a well-established contributor to clinically relevant AMR infections. Here, we describe a series of transmembrane peptides (TMs) to target the oligomerization motif of the AcrB component of the AcrAB-TolC MDR efflux pump from Escherichia coli. These peptides contain an N-terminal acetyl-A-(Sar)3 (sarcosine; N-methylglycine) tag and a C-terminal lysine tag-a design strategy our lab has utilized to improve the solubility and specificity of targeting for TMs previously. While these peptides have proven useful in preventing AcrB-mediated substrate efflux, the mechanisms by which these peptides associate with and penetrate the bacterial membrane remained unknown. In this study, we have shown peptide hydrophobic moment (μH)-the measure of concentrated hydrophobicity on one face of a lipopathic α-helix-drives bacterial membrane permeabilization and depolarization, likely through lateral-phase separation of negatively-charged POPG lipids and the disruption of lipid packing. Our results show peptide μH is an important consideration when designing membrane-active peptides and may be the determining factor in whether a TM will function in a permeabilizing or non-permeabilizing manner when embedded in the bacterial membrane.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

公众号