Apicoplasts

Apicoplass
  • 文章类型: Journal Article
    丙酮酸盐位于真核生物碳代谢的关键节点。它参与多种细胞器的多种代谢途径,它的细胞器间穿梭对细胞健康至关重要。许多牙尖丛寄生虫都有一种独特的细胞器,称为牙尖体,它容纳着脂肪酸和类异戊二烯前体生物合成等代谢途径,需要丙酮酸作为底物。然而,丙酮酸盐是如何在Apicoplast中提供的仍然是个谜。这里,部署人畜共患寄生虫弓形虫作为模型的顶部丛,我们鉴定了两种存在于生皮膜中的蛋白质,它们共同构成一种功能性的生皮膜丙酮酸载体(APC),以介导胞浆丙酮酸的输入.APC的耗竭会导致峰顶体中代谢途径的活性降低和细胞器的完整性受损。导致寄生虫生长停滞。APC是一种丙酮酸转运蛋白,存在于不同的顶丛寄生虫中,提示在这些临床相关的细胞内病原体中通过峰顶体获得丙酮酸的常见策略。
    Pyruvate lies at a pivotal node of carbon metabolism in eukaryotes. It is involved in diverse metabolic pathways in multiple organelles, and its interorganelle shuttling is crucial for cell fitness. Many apicomplexan parasites harbor a unique organelle called the apicoplast that houses metabolic pathways like fatty acid and isoprenoid precursor biosyntheses, requiring pyruvate as a substrate. However, how pyruvate is supplied in the apicoplast remains enigmatic. Here, deploying the zoonotic parasite Toxoplasma gondii as a model apicomplexan, we identified two proteins residing in the apicoplast membranes that together constitute a functional apicoplast pyruvate carrier (APC) to mediate the import of cytosolic pyruvate. Depletion of APC results in reduced activities of metabolic pathways in the apicoplast and impaired integrity of this organelle, leading to parasite growth arrest. APC is a pyruvate transporter in diverse apicomplexan parasites, suggesting a common strategy for pyruvate acquisition by the apicoplast in these clinically relevant intracellular pathogens.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    Apicoplast是一种四膜质体,存在于Apicomplex中,在基质中具有生物合成和细胞器内务活动。然而,驱动代谢物通量的机制,进出,仍然未知。这里,我们使用TurboID和基因组工程来鉴定弓形虫的原生质体转运蛋白。在众多新颖的运输者中,我们表明,一对顶复单羧酸转运蛋白(AMTs)似乎是从吞噬红藻的假定宿主细胞进化而来的。蛋白质消耗表明AMT1和AMT2对寄生虫生长至关重要。代谢物分析支持AMT1和AMT2与类异戊二烯和脂肪酸的生物合成相关的观点。然而,对于AMT2观察到更强的表型缺陷,包括无法在小鼠中建立弓形虫寄生虫毒力。这项研究澄清了,显著,Apicoplast转运蛋白组成的奥秘,并揭示了这对AMTs在维持Apicoplast活性中的重要性。
    The apicoplast is a four-membrane plastid found in the apicomplexans, which harbors biosynthesis and organelle housekeeping activities in the matrix. However, the mechanism driving the flux of metabolites, in and out, remains unknown. Here, we used TurboID and genome engineering to identify apicoplast transporters in Toxoplasma gondii. Among the many novel transporters, we show that one pair of apicomplexan monocarboxylate transporters (AMTs) appears to have evolved from a putative host cell that engulfed a red alga. Protein depletion showed that AMT1 and AMT2 are critical for parasite growth. Metabolite analyses supported the notion that AMT1 and AMT2 are associated with biosynthesis of isoprenoids and fatty acids. However, stronger phenotypic defects were observed for AMT2, including in the inability to establish T. gondii parasite virulence in mice. This study clarifies, significantly, the mystery of apicoplast transporter composition and reveals the importance of the pair of AMTs in maintaining the apicoplast activity in apicomplexans.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    叶绿体是重要的细胞器,负责在广泛的生物中进行光合作用,这些生物已在地球上的所有生物群落中定居,例如植物和单细胞藻类。有趣的是,红色藻类祖先的继发性内共生事件产生了一组采用专性寄生生活方式的生物,称为Apicomplex寄生虫。顶孔虫寄生虫是世界上一些最普遍和控制不良的病原体。这些传染性病原体是人类主要疾病的原因,如弓形虫病,弓形虫引起的,疟疾,由疟原虫引起。这些寄生虫中的大多数都有这种叫做原生质体的残体,这对寄生虫的生存至关重要。根尖失去了光合能力,但在代谢上与植物和藻类叶绿体相似。峰顶体被认为是针对顶孔丛寄生虫的新型重要药物靶标。本章重点介绍顶孔虫寄生虫的峰顶体,其维护,和它的代谢途径。
    Chloroplasts are essential organelles that are responsible for photosynthesis in a wide range of organisms that have colonized all biotopes on Earth such as plants and unicellular algae. Interestingly, a secondary endosymbiotic event of a red algal ancestor gave rise to a group of organisms that have adopted an obligate parasitic lifestyle named Apicomplexa parasites. Apicomplexa parasites are some of the most widespread and poorly controlled pathogens in the world. These infectious agents are responsible for major human diseases such as toxoplasmosis, caused by Toxoplasma gondii, and malaria, caused by Plasmodium spp. Most of these parasites harbor this relict plastid named the apicoplast, which is essential for parasite survival. The apicoplast has lost photosynthetic capacities but is metabolically similar to plant and algal chloroplasts. The apicoplast is considered a novel and important drug target against Apicomplexa parasites. This chapter focuses on the apicoplast of apicomplexa parasites, its maintenance, and its metabolic pathways.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    由间日疟原虫引起的疟疾的控制和消除受到由休眠的肝催眠子的激活引起的复发感染的威胁的阻碍。目前,只有8-氨基喹啉,伯氨喹和他非诺喹,已经被批准用于消除催眠,尽管它们的使用受到潜在毒性的阻碍。因此,一种安全地消除催眠的替代治疗药物是一个紧迫的需要。在这项研究中,我们评估了抗生素阿奇霉素的潜在杀催眠活性,它被认为通过抑制原核生物样核糖体翻译来发挥抗疟药活性,在原生质体内,不可或缺的细胞器。我们的结果表明,阿奇霉素在间日疟原虫和食蟹猴肝期分裂过程中抑制了原生质体的发育,导致寄生虫成熟受损。更重要的是,我们发现阿奇霉素很可能会损害被催生子的原生质体,导致该细胞器的丧失。随后,通过使用最近开发的长期肝细胞培养系统,我们发现,这种损失可能会导致一个延迟的催眠体激活率和那些寄生虫,确实进行分裂前显示肝阶段停滞分化为肝裂殖子,因此,有可能预防复发。总之,这项工作为阿奇霉素在复发性疟疾的根治治疗中的潜在用途提供了证据,并确定了在静止的催生子中作为潜在药物靶标的Apicoplast功能。
    The control and elimination of malaria caused by Plasmodium vivax is hampered by the threat of relapsed infection resulting from the activation of dormant hepatic hypnozoites. Currently, only the 8-aminoquinolines, primaquine and tafenoquine, have been approved for the elimination of hypnozoites, although their use is hampered by potential toxicity. Therefore, an alternative radical curative drug that safely eliminates hypnozoites is a pressing need. This study assessed the potential hypnozoiticidal activity of the antibiotic azithromycin, which is thought to exert antimalarial activity by inhibiting prokaryote-like ribosomal translation within the apicoplast, an indispensable organelle. The results show that azithromycin inhibited apicoplast development during liver-stage schizogony in P. vivax and Plasmodium cynomolgi, leading to impaired parasite maturation. More importantly, this study found that azithromycin is likely to impair the hypnozoite\'s apicoplast, resulting in the loss of this organelle. Subsequently, using a recently developed long-term hepatocyte culture system, this study found that this loss likely induces a delay in the hypnozoite activation rate, and that those parasites that do proceed to schizogony display liver-stage arrest prior to differentiating into hepatic merozoites, thus potentially preventing relapse. Overall, this work provides evidence for the potential use of azithromycin for the radical cure of relapsing malaria, and identifies apicoplast functions as potential drug targets in quiescent hypnozoites.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    弓形虫是世界上最重要的寄生虫之一。原生质体是一种独特的细胞器,由所有的丝锥原生动物共有。越来越多的证据表明Apicoplast拥有自己的泛素化系统。去泛素化是去泛素酶(DUB)在蛋白质泛素化过程中执行的关键步骤。虽然在弓形虫中已经鉴定出泛素化的多种成分,所涉及的去泛素酶仍然未知。本研究的目的是描述TgOTU7的定位并阐明其功能。TgOTU7特别定位在峰顶体,其表达在细胞周期过程中受到很大程度的调控。此外,TgOTU7有效地分解泛素链,表现出连锁非特异性去泛素化活性,对裂解周期和原生质体生物发生至关重要,类似于Apicoplast基因组的转录和编码Apicoplast靶向蛋白的核基因。一起来看,结果表明,新描述的去泛素酶TgOTU7特异性地定位于弓形虫的叶尖,并影响弓形虫的细胞生长和叶尖体内稳态。
    Toxoplasma gondii is among the most important parasites worldwide. The apicoplast is a unique organelle shared by all Apicomplexan protozoa. Increasing lines of evidence suggest that the apicoplast possesses its own ubiquitination system. Deubiquitination is a crucial step executed by deubiquitinase (DUB) during protein ubiquitination. While multiple components of ubiquitination have been identified in T. gondii, the deubiquitinases involved remain unknown. The aim of the current study was to delineate the localization of TgOTU7 and elucidate its functions. TgOTU7 was specifically localized at the apicoplast, and its expression was largely regulated during the cell cycle. Additionally, TgOTU7 efficiently breaks down ubiquitin chains, exhibits linkage-nonspecific deubiquitinating activity and is critical for the lytic cycle and apicoplast biogenesis, similar to the transcription of the apicoplast genome and the nuclear genes encoding apicoplast-targeted proteins. Taken together, the results indicate that the newly described deubiquitinase TgOTU7 specifically localizes to the apicoplast and affects the cell growth and apicoplast homeostasis of T. gondii.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    疟疾寄生虫在人红细胞中的复制需要大量的锌通量,需要锌转运蛋白穿过寄生虫血浆和细胞层膜的作用。尽管已经对疟原虫中的一些“孤儿”锌转运蛋白进行了基因敲除研究。,它们都没有功能特征。我们使用重组恶性疟原虫Zrt-/Irt样蛋白(PfZIP1)和针对其产生的特异性抗体来探索亚细胞定位,函数,金属离子选择性,以及对细胞锌水平的反应。在胞质Zn2+耗尽后,PfZIP1表达增强。蛋白质通过血液阶段从加工过的形式过渡到未加工的形式,定位于滋养体的原生质体和分裂体和配子细胞的寄生虫质膜,指示特定阶段的功能角色。PfZIP1二聚体介导Zn2+流入蛋白脂质体中。与Fe2+相比,它表现出对Zn2+的优先结合,锌的选择性由仅在灵长类动物感染的疟原虫物种中保守的富含C末端组氨酸的区域驱动。
    Replication of the malarial parasite in human erythrocytes requires massive zinc fluxes, necessitating the action of zinc transporters across the parasite plasma and organellar membranes. Although genetic knockout studies have been conducted on a few \"orphan\" zinc transporters in Plasmodium spp., none of them have been functionally characterized. We used the recombinant Plasmodium falciparum Zrt-/Irt-like protein (PfZIP1) and specific antibodies generated against it to explore the subcellular localization, function, metal-ion selectivity, and response to cellular zinc levels. PfZIP1 expression was enhanced upon the depletion of cytosolic Zn2+. The protein transitioned from the processed to unprocessed form through blood stages, localizing to the apicoplast in trophozoites and to the parasite plasma membrane in schizonts and gametocytes, indicating stage-specific functional role. The PfZIP1 dimer mediated Zn2+ influx in proteoliposomes. It exhibited preferential binding to Zn2+ compared to Fe2+, with the selectivity for zinc being driven by a C-terminal histidine-rich region conserved only in primate-infecting Plasmodium species.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    Apicomplex寄生虫在其许多基本细胞生物学中表现出巨大的多样性,但是使用光学显微镜研究这些生物往往受到它们的小尺寸的阻碍。超微结构扩展显微镜(U-ExM)是一种显微镜制备方法,可将样品物理扩展〜4.5倍。这里,我们将U-ExM应用于人类疟原虫恶性疟原虫在其生命周期的无性血液阶段,以了解这种寄生虫是如何在三个维度上组织的。使用染料结合试剂和免疫染色的组合,我们对该寄生虫红细胞内发育过程中13种不同的恶性疟原虫结构或细胞器进行了分类,并对基本寄生虫细胞生物学进行了多次观察。我们描述了在有丝分裂期间,外部中心性斑块及其相关蛋白将细胞核锚定到寄生虫质膜上。此外,rhoptries,高尔基,基底复合体,和内膜复合物,当原子核仍在分裂时,在这个锚定位点周围形成,同时隔离并保持与外部中心性斑块的关联,直到开始分割。我们还表明,线粒体和原生质体经历了连续的裂变事件,同时在胞质分裂过程中与外部中心性斑块保持关联。总的来说,这项研究代表了迄今为止恶性疟原虫在红细胞内发育过程中最详细的超微结构分析,并揭示了其细胞器生物发生和基本细胞生物学的多个鲜为人知的方面。
    Apicomplexan parasites exhibit tremendous diversity in much of their fundamental cell biology, but study of these organisms using light microscopy is often hindered by their small size. Ultrastructural expansion microscopy (U-ExM) is a microscopy preparation method that physically expands the sample by ~4.5×. Here, we apply U-ExM to the human malaria parasite Plasmodium falciparum during the asexual blood stage of its lifecycle to understand how this parasite is organized in three dimensions. Using a combination of dye-conjugated reagents and immunostaining, we have cataloged 13 different P. falciparum structures or organelles across the intraerythrocytic development of this parasite and made multiple observations about fundamental parasite cell biology. We describe that the outer centriolar plaque and its associated proteins anchor the nucleus to the parasite plasma membrane during mitosis. Furthermore, the rhoptries, Golgi, basal complex, and inner membrane complex, which form around this anchoring site while nuclei are still dividing, are concurrently segregated and maintain an association to the outer centriolar plaque until the start of segmentation. We also show that the mitochondrion and apicoplast undergo sequential fission events while maintaining an association with the outer centriolar plaque during cytokinesis. Collectively, this study represents the most detailed ultrastructural analysis of P. falciparum during its intraerythrocytic development to date and sheds light on multiple poorly understood aspects of its organelle biogenesis and fundamental cell biology.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    类异戊二烯前体合成是质体细胞器的古老而基本的功能,也是疟原虫疟原虫中原生质体的关键代谢活性[1-3]。在过去的十年里,我们对Apicoplast特性和功能的理解已经大大增加[4],在很大程度上是由于我们有能力通过补充培养物异戊烯焦磷酸(IPP)来从Apicoplast特异性功能障碍中拯救血液阶段的寄生虫,这个细胞器的关键输出[5,6]。在这珍珠里,我们探讨了恶性疟原虫中类异戊二烯代谢与原生质体生物发生之间的相互依存关系,并强调了未来需要回答的关键问题。
    Isoprenoid precursor synthesis is an ancient and fundamental function of plastid organelles and a critical metabolic activity of the apicoplast in Plasmodium malaria parasites [1-3]. Over the past decade, our understanding of apicoplast properties and functions has increased enormously [4], due in large part to our ability to rescue blood-stage parasites from apicoplast-specific dysfunctions by supplementing cultures with isopentenyl pyrophosphate (IPP), a key output of this organelle [5,6]. In this Pearl, we explore the interdependence between isoprenoid metabolism and apicoplast biogenesis in P. falciparum and highlight critical future questions to answer.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    ATG8/LC3介导的自噬体形成是自噬过程中的关键限速步骤。寄生原生弓形虫拥有单个ATG8同源物(TgATG8),它可以定位于参与在缓释体中传递自噬物质的任一胞质自噬体,或者是最外面的膜,一种非光合质体样细胞器,负责维持速殖子的体内平衡。然而,调节TgATG8的机制仍未得到充分理解。这里,我们产生的TgATG7条件性敲除系在寄生虫的生长中严重受损,并在细胞器水平上表现出显著缺陷,惊人的是线粒体网络的碎片化和原生质体的丢失。特定的TgATG7C1133S点突变体互补系表明,这些缺陷与其E1型酶活性有关。TgATG7的耗尽及其催化半胱氨酸1133的突变都阻碍了TgATG8的脂化和Apicoplast定位。出乎意料的是,我们还发现TgATG7的消耗降低了脱脂TgATG8蛋白水平。随后,我们确定TgATG7能够通过其C端结构域直接与TgATG8相互作用,并通过多单数化刺激TgATG8的蛋白酶体依赖性降解,而TgATG7可以通过稳定TgATG8抑制降解。此外,我们鉴定了TgATG7的一个推定的TgATG8相互作用片段,1281-1290aa。片段的耗尽会损害寄生虫的生长和原生质体的遗传。据我们所知,我们的研究首次阐明了TgATG7和泛素-蛋白酶体系统在协同调节TgATG8非脂质库中的作用,提示了一种潜在的稳态机制,该机制负责平衡弓形虫中的自噬活性。
    ATG8/LC3-mediated autophagosome formation is a key rate-limiting step in the process of autophagy. The parasitic protist Toxoplasma gondii possesses a single ATG8 homolog (TgATG8), which can localize to either cytosolic autophagosome involved in delivery of autophagic material in bradyzoites, or the outermost membrane of apicoplast, a nonphotosynthetic plastid-like organelle, responsible for maintaining homeostasis in tachyzoites. However, mechanisms that regulate TgATG8 remain insufficiently understood. Here, a TgATG7 conditional knockdown line that we have generated is severely impaired in parasite\'s growth and exhibits significant defects in the organelle level, strikingly with a fragmentation of the mitochondrial network and a loss of the apicoplast. Specific TgATG7C1133S point mutant complemented line showed that these defects were associated with its E1-type enzyme activity. Both depletion of TgATG7 and mutation of its catalytic cysteine 1133 hindered TgATG8 lipidation and apicoplast localization. Unexpectedly, we also found that depletion of TgATG7 reduced the unlipidated TgATG8 protein level. Subsequently, we determined that TgATG7 was able to interact with TgATG8 directly via its C-terminal domain and multi-monoubiquitination stimulated proteasome-dependent degradation of TgATG8, while TgATG7 could inhibit the degradation through stabilization of TgATG8. Additionally, we identified a putative TgATG8 interacting fragment of TgATG7, 1281-1290aa. Depletion of the fragment impaired the parasite growth and apicoplast inheritance. To our knowledge, our study is the first to elucidate the role of TgATG7 and the ubiquitin-proteasome system in synergistically regulating the non-lipidated pool of TgATG8, suggesting a potential homeostatic mechanism responsible for balancing autophagic activity in T. gondii.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    弓形虫含有一种必需的质体细胞器,称为原生质体,是脂肪酸所必需的,类异戊二烯,和血红素合成。影响原生质体功能或遗传的扰动导致寄生虫死亡。Apicoplast是一个单拷贝的细胞器,因此,必须分开,以便每个子寄生虫在细胞分裂过程中继承一个原生质体。在这项研究中,我们确定了F-肌动蛋白和非常规肌球蛋白运动的新角色,TgMyoF,在这个过程中。首先,TgMyoF和肌动蛋白的丢失导致胞质溶胶中峰顶体囊泡的积累,表明该肌动球蛋白系统在峰顶体蛋白运输或细胞器形态完整性中的作用。第二,活细胞成像显示,在分裂过程中,Apicoplast是高度动态的,表现出分枝,依赖于TgMyoF和肌动蛋白的U形和线性形态。在TgMyoF耗竭抑制运动的寄生虫中,原生质体不能与寄生虫中心体联系。因此,这项研究提供了重要的新见解,控制顶端体-中心体关联的机制,原生质体分裂周期的重要一步,这确保了每个女儿都继承了一个单一的apicoplast。重要性弓形虫和大多数其他寄生虫在顶孔门含有一个峰顶体,脂肪酸所需的非光合质体细胞器,类异戊二烯,铁硫簇,和血红素合成。原生质体功能的扰动导致寄生虫死亡。因此,寄生虫的生存主要取决于两个细胞过程:原生质体分裂,以确保每个子寄生虫继承一个单一的原生质体,并将核编码的蛋白质运输到原生质体中。尽管这些过程很重要,在控制这些过程的分子机制方面存在着巨大的知识空白;对于核编码的Apicoplast蛋白的贩运尤其如此。这项研究为Apicoplast蛋白合成和运输到Apicoplast的时机提供了重要的新见解。此外,这项研究证明了根尖-中心体的关联,原生质体分裂周期的关键步骤,由肌动球蛋白细胞骨架控制。
    OBJECTIVE: Toxoplasma gondii and most other parasites in the phylum Apicomplexa contain an apicoplast, a non-photosynthetic plastid organelle required for fatty acid, isoprenoid, iron-sulfur cluster, and heme synthesis. Perturbation of apicoplast function results in parasite death. Thus, parasite survival critically depends on two cellular processes: apicoplast division to ensure every daughter parasite inherits a single apicoplast, and trafficking of nuclear encoded proteins to the apicoplast. Despite the importance of these processes, there are significant knowledge gaps in regards to the molecular mechanisms which control these processes; this is particularly true for trafficking of nuclear-encoded apicoplast proteins. This study provides crucial new insight into the timing of apicoplast protein synthesis and trafficking to the apicoplast. In addition, this study demonstrates how apicoplast-centrosome association, a key step in the apicoplast division cycle, is controlled by the actomyosin cytoskeleton.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

公众号