Anti-CRISPR

抗 CRISPR
  • 文章类型: Journal Article
    CRISPR-Cas12a基因组工程系统已广泛应用于植物研究和作物育种。迄今为止,抗CRISPR-Cas12a系统的性能和使用尚未在植物中完全确立。这里,我们进行了计算机模拟分析,以确定Cas12a的推定抗CRISPR系统。这些推定的抗CRISPR蛋白,以及已知的抗CRISPR蛋白,评估它们在体内和植物中抑制Cas12a切割活性的能力。在所有测试的抗CRISPR蛋白中,AcrVA1显示对大肠杆菌中Mb2Cas12a和LbCas12a的强烈抑制。进一步的试验表明,AcrVA1抑制了LbCas12a介导的水稻原生质体和稳定转基因株系的基因组编辑。令人印象深刻的是,AcrVA1的共表达减轻了CRISPR-LbCas12a的脱靶效应,正如全基因组测序所揭示的。此外,表达AcrVA1的转基因植物对LbCas12a介导的基因组编辑表现出不同程度的抑制,代表了一种微调基因组编辑效率的新方法。通过控制AcrVA1的时间和空间表达,我们表明可以在植物中实现诱导型和组织特异性基因组编辑。此外,我们证明AcrVA1也抑制基于LbCas12a的CRISPR激活(CRISPRa),基于这一原理,我们建立了逻辑门来打开和关闭植物细胞中的靶基因。一起,我们已经在植物中建立了有效的抗CRISPR-Cas12a系统,并展示了其在减轻脱靶效应方面的多功能应用。微调基因组编辑效率,实现基因组编辑的时空控制,并产生用于控制植物细胞中靶基因表达的合成逻辑门。
    CRISPR-Cas12a genome engineering systems have been widely used in plant research and crop breeding. To date, the performance and use of anti-CRISPR-Cas12a systems have not been fully established in plants. Here, we conduct in silico analysis to identify putative anti-CRISPR systems for Cas12a. These putative anti-CRISPR proteins, along with known anti-CRISPR proteins, are assessed for their ability to inhibit Cas12a cleavage activity in vivo and in planta. Among all anti-CRISPR proteins tested, AcrVA1 shows robust inhibition of Mb2Cas12a and LbCas12a in E. coli. Further tests show that AcrVA1 inhibits LbCas12a mediated genome editing in rice protoplasts and stable transgenic lines. Impressively, co-expression of AcrVA1 mitigates off-target effects by CRISPR-LbCas12a, as revealed by whole genome sequencing. In addition, transgenic plants expressing AcrVA1 exhibit different levels of inhibition to LbCas12a mediated genome editing, representing a novel way of fine-tuning genome editing efficiency. By controlling temporal and spatial expression of AcrVA1, we show that inducible and tissue specific genome editing can be achieved in plants. Furthermore, we demonstrate that AcrVA1 also inhibits LbCas12a-based CRISPR activation (CRISPRa) and based on this principle we build logic gates to turn on and off target genes in plant cells. Together, we have established an efficient anti-CRISPR-Cas12a system in plants and demonstrate its versatile applications in mitigating off-target effects, fine-tuning genome editing efficiency, achieving spatial-temporal control of genome editing, and generating synthetic logic gates for controlling target gene expression in plant cells.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    在细菌和噬菌体之间正在进行的军备竞赛中,噬菌体已经进化出抗CRISPR蛋白以对抗细菌CRISPR-Cas系统。最近,已经发现AcrIIA25.1和AcrIIA32在细菌和人细胞中有效抑制SpyCas9的活性。然而,它们的分子机制仍然难以捉摸。这里,我们报道了由AcrIIA25.1和AcrIIA32与SpyCas9-sgRNA结合形成的三元复合物的低温电子显微镜结构。利用结构分析和生化实验,我们发现AcrIIA25.1和AcrIIA32承认一部小说,SpyCas9上先前未识别的抗CRISPR结合位点。我们发现AcrIIA25.1和AcrIIA32都直接与WED域相互作用,它们在空间上阻碍了WED和PI域的构象变化,从而抑制SpyCas9识别前间隔区相邻基序(PAM)和解链双链DNA。此外,它们可能通过阻断SpyCas9监测复合物的动态构象变化来抑制核酸酶活性。总之,我们的数据阐明了两种新的抗CRISPR蛋白的抑制机制,为调节SpyCas9活性提供新的策略,扩大我们对抗CRISPR蛋白抑制机制多样性的理解。
    In the ongoing arms race between bacteria and bacteriophages, bacteriophages have evolved anti-CRISPR proteins to counteract bacterial CRISPR-Cas systems. Recently, AcrIIA25.1 and AcrIIA32 have been found to effectively inhibit the activity of SpyCas9 both in bacterial and human cells. However, their molecular mechanisms remain elusive. Here, we report the cryo-electron microscopy structures of ternary complexes formed by AcrIIA25.1 and AcrIIA32 bound to SpyCas9-sgRNA. Using structural analysis and biochemical experiments, we revealed that AcrIIA25.1 and AcrIIA32 recognize a novel, previously-unidentified anti-CRISPR binding site on SpyCas9. We found that both AcrIIA25.1 and AcrIIA32 directly interact with the WED domain, where they spatially obstruct conformational changes of the WED and PI domains, thereby inhibiting SpyCas9 from recognizing protospacer adjacent motif (PAM) and unwinding double-stranded DNA. In addition, they may inhibit nuclease activity by blocking the dynamic conformational changes of the SpyCas9 surveillance complex. In summary, our data elucidate the inhibition mechanisms of two new anti-CRISPR proteins, provide new strategies for the modulation of SpyCas9 activity, and expand our understanding of the diversity of anti-CRISPR protein inhibition mechanisms.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Review
    CRISPR-Cas效应子是基因组和转录组靶向和编辑的强大工具。自然,这些蛋白质-RNA复合物是微生物先天免疫系统的一部分,它来自微生物和噬菌体之间的进化军备竞赛。这种协同进化也产生了所谓的抗CRISPR(Acr)蛋白,其抵消CRISPR-Cas适应性免疫。参与者组成性阻断同源CRISPR-Cas效应子,例如,通过干扰引导RNA结合,目标DNA/RNA识别,或目标切割。除了它们在微生物学和进化中的重要作用,Acrs最近因成为调节或微调CRISPR-Cas效应子活性的有用工具和开关而受到特别关注。由于它们通常尺寸小,高抑制效力,以及结构和机械的多功能性,Acrs为在异源系统中控制CRISPR效应子提供了广泛的潜在应用,包括哺乳动物细胞。这里,我们回顾了Acrs在哺乳动物细胞和生物体中的各种应用,并讨论了潜在的工程策略。这些应用包括(i)持续阻断CRISPR-Cas功能以创建写保护单元,(ii)减少CRISPR-Cas脱靶编辑,(iii)将CRISPR-Cas活性集中于特定的细胞类型和组织,(iv)基于工程的CRISPR效应子的时空控制,光电-,或化学遗传演员,和(v)Acrs用于选择性结合和检测复杂样品中的CRISPR-Cas效应子的用途。我们还将重点介绍Acrs在生物医学领域的潜在未来应用,并指出当前需要克服的挑战。
    CRISPR-Cas effectors are powerful tools for genome and transcriptome targeting and editing. Naturally, these protein-RNA complexes are part of the microbial innate immune system, which emerged from the evolutionary arms race between microbes and phages. This coevolution has also given rise to so-called anti-CRISPR (Acr) proteins that counteract the CRISPR-Cas adaptive immunity. Acrs constitutively block cognate CRISPR-Cas effectors, e.g., by interfering with guide RNA binding, target DNA/RNA recognition, or target cleavage. In addition to their important role in microbiology and evolution, Acrs have recently gained particular attention for being useful tools and switches to regulate or fine-tune the activity of CRISPR-Cas effectors. Due to their commonly small size, high inhibition potency, and structural and mechanistic versatility, Acrs offer a wide range of potential applications for controlling CRISPR effectors in heterologous systems, including mammalian cells.Here, we review the diverse applications of Acrs in mammalian cells and organisms and discuss the underlying engineering strategies. These applications include (i) persistent blockage of CRISPR-Cas function to create write-protected cells, (ii) reduction of CRISPR-Cas off-target editing, (iii) focusing CRISPR-Cas activity to specific cell types and tissues, (iv) spatiotemporal control of CRISPR effectors based on engineered, opto-, or chemogenetic Acrs, and (v) the use of Acrs for selective binding and detection of CRISPR-Cas effectors in complex samples. We will also highlight potential future applications of Acrs in a biomedical context and point out present challenges that need to be overcome on the way.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    CRISPR-Cas免疫系统为细菌提供针对噬菌体的适应性免疫,但它们通常被转录抑制以减轻自身免疫。在某些情况下,CRISPR-Cas表达增加,以响应噬菌体感染,但是诱导机制在很大程度上是未知的,目前尚不清楚诱导是否足够强烈和迅速地发生以使细菌宿主受益。在化脓性链球菌中,Cas9是CRISPR-Cas表达的免疫效应子和自抑制子。这里,我们证明,噬菌体编码的抗CRISPR蛋白缓解了Cas9自抑制,并在单个噬菌体感染周期中引发CRISPR-Cas水平的快速升高.因此,更少的细胞死于裂解,导致在多轮感染后显著的生存益处。CRISPR-Cas诱导也会降低溶源性,从而限制了水平基因转移的途径。总之,我们表明Cas9不仅是CRISPR-Cas效应子和阻遏物,而且是可以安装抗抗CRISPR转录反应的噬菌体传感器。
    CRISPR-Cas immune systems provide bacteria with adaptive immunity against bacteriophages, but they are often transcriptionally repressed to mitigate auto-immunity. In some cases, CRISPR-Cas expression increases in response to a phage infection, but the mechanisms of induction are largely unknown, and it is unclear whether induction occurs strongly and quickly enough to benefit the bacterial host. In S. pyogenes, Cas9 is both an immune effector and auto-repressor of CRISPR-Cas expression. Here, we show that phage-encoded anti-CRISPR proteins relieve Cas9 auto-repression and trigger a rapid increase in CRISPR-Cas levels during a single phage infective cycle. As a result, fewer cells succumb to lysis, leading to a striking survival benefit after multiple rounds of infection. CRISPR-Cas induction also reduces lysogeny, thereby limiting a route for horizontal gene transfer. Altogether, we show that Cas9 is not only a CRISPR-Cas effector and repressor but also a phage sensor that can mount an anti-anti-CRISPR transcriptional response.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    I型CRISPR-Cas系统利用RNA引导的Cascade复合物来鉴定匹配的DNA靶标和核酸酶-解旋酶Cas3来降解它们。在七个亚型中,I-C型大小紧凑,在人类细胞中产生大型基因组缺失方面具有高度活性。这里,我们使用四个低温电子显微镜快照来确定其RNA引导的DNA结合和切割机制。非靶DNA链(NTS)被I-C级联容纳在沿着并列的Cas11亚基的连续结合凹槽中。Cas3的结合进一步捕获了NTS中的柔性凸起,启用NTS刻痕。我们鉴定了两种抗CRISPR蛋白AcrIC8和AcrIC9,它们强烈抑制内酰菌I-C功能。结构分析表明AcrIC8通过变构抑制抑制PAM识别,而AcrIC9是通过直接竞争实现的。两种Acrs都能有效抑制人类细胞中I-C介导的基因组编辑和转录调节,为I型CRISPR真核基因组工程提供第一个关闭开关。
    Type I CRISPR-Cas systems utilize the RNA-guided Cascade complex to identify matching DNA targets and the nuclease-helicase Cas3 to degrade them. Among the seven subtypes, type I-C is compact in size and highly active in creating large-sized genome deletions in human cells. Here, we use four cryoelectron microscopy snapshots to define its RNA-guided DNA binding and cleavage mechanisms in high resolution. The non-target DNA strand (NTS) is accommodated by I-C Cascade in a continuous binding groove along the juxtaposed Cas11 subunits. Binding of Cas3 further traps a flexible bulge in NTS, enabling NTS nicking. We identified two anti-CRISPR proteins AcrIC8 and AcrIC9 that strongly inhibit Neisseria lactamica I-C function. Structural analysis showed that AcrIC8 inhibits PAM recognition through allosteric inhibition, whereas AcrIC9 achieves so through direct competition. Both Acrs potently inhibit I-C-mediated genome editing and transcriptional modulation in human cells, providing the first off-switches for type I CRISPR eukaryotic genome engineering.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    存在六种主要类型的CRISPR-Cas系统,其在细菌和古细菌中提供针对侵入性遗传元件的适应性免疫。CRISPR-Cas系统的发现彻底改变了许多生物体的遗传学领域。在过去的几年里,最丰富的I类CRISPR-Cas系统的开发揭示了它们在多种微生物中实现基因编辑和调控的巨大潜力和独特优势,尽管它们的结构复杂。广泛和多样化的I型CRISPR-Cas系统对于开发新的生物技术工具越来越有吸引力,尤其是在遗传上难以抵抗的微生物菌株中。在这篇评论文章中,我们全面总结了利用I型CRISPR-Cas系统进行微生物基因编辑和调控的最新进展。重要的是,扩大基于CRISPR-Cas的I型应用的微生物宿主范围,这些结构复杂的系统已被改进为可转移的基因编辑工具,具有用于稳定表达CRISPR-Cas元件的有效递送方法,以及通过避免Cas3核酸酶的缺失或突变来防止DNA切割的便利基因调控工具。我们设想I型CRISPR-Cas系统将在很大程度上扩展用于医疗微生物的生物技术工具箱,环境和工业重要性。
    There are six major types of CRISPR-Cas systems that provide adaptive immunity in bacteria and archaea against invasive genetic elements. The discovery of CRISPR-Cas systems has revolutionized the field of genetics in many organisms. In the past few years, exploitations of the most abundant class 1 type I CRISPR-Cas systems have revealed their great potential and distinct advantages to achieve gene editing and regulation in diverse microorganisms in spite of their complicated structures. The widespread and diversified type I CRISPR-Cas systems are becoming increasingly attractive for the development of new biotechnological tools, especially in genetically recalcitrant microbial strains. In this review article, we comprehensively summarize recent advancements in microbial gene editing and regulation by utilizing type I CRISPR-Cas systems. Importantly, to expand the microbial host range of type I CRISPR-Cas-based applications, these structurally complicated systems have been improved as transferable gene-editing tools with efficient delivery methods for stable expression of CRISPR-Cas elements, as well as convenient gene-regulation tools with the prevention of DNA cleavage by obviating deletion or mutation of the Cas3 nuclease. We envision that type I CRISPR-Cas systems will largely expand the biotechnological toolbox for microbes with medical, environmental and industrial importance.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    目的:艰难梭菌是一种广泛存在的厌氧孢子形成菌,是全球范围内与抗生素治疗相关的潜在致死性医院感染的主要原因。由于与强烈的炎症反应和更高的复发率相关的严重形式的增加,当前的当务之急是开发针对艰难梭菌感染的协同和替代疗法。特别是,噬菌体疗法被认为是现有抗微生物疗法的潜在替代品。然而,它面临挑战,因为艰难梭菌具有高度活跃的CRISPR-Cas免疫力,这可能是对富含噬菌体和高度拥挤的肠道环境的特定适应。为了克服这种防御,艰难梭菌噬菌体必须采用抗CRISPR机制。这里,我们提出了第一个抑制CRISPR-Cas防御系统的抗CRISPR蛋白。我们的工作提供了对艰难梭菌及其噬菌体之间相互作用的见解,为未来的基于CRISPR的应用和有效的噬菌体治疗策略的发展铺平道路,并结合毒性艰难梭菌感染噬菌体的工程。
    OBJECTIVE: Clostridioides difficile is the widespread anaerobic spore-forming bacterium that is a major cause of potentially lethal nosocomial infections associated with antibiotic therapy worldwide. Due to the increase in severe forms associated with a strong inflammatory response and higher recurrence rates, a current imperative is to develop synergistic and alternative treatments for C. difficile infections. In particular, phage therapy is regarded as a potential substitute for existing antimicrobial treatments. However, it faces challenges because C. difficile has highly active CRISPR-Cas immunity, which may be a specific adaptation to phage-rich and highly crowded gut environment. To overcome this defense, C. difficile phages must employ anti-CRISPR mechanisms. Here, we present the first anti-CRISPR protein that inhibits the CRISPR-Cas defense system in this pathogen. Our work offers insights into the interactions between C. difficile and its phages, paving the way for future CRISPR-based applications and development of effective phage therapy strategies combined with the engineering of virulent C. difficile infecting phages.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    CRISPR(成簇定期间隔短回文重复)是一种多功能技术,可以精确修饰基因。其最有希望的应用之一是在癌症治疗中。通过靶向和编辑参与癌症发展和进展的特定基因,CRISPR有可能成为对抗癌症的有力工具。本文旨在评估CRISPR技术在癌症研究中的最新进展,并探讨障碍和解决这些障碍的潜在策略。用于基因编辑的两种最常用的CRISPR系统是CRISPR/Cas9和CRISPR/Cas12a。CRISPR/Cas9采用不同的修复系统,包括同源重组(HR)和非同源末端连接(NHEJ),对目标基因进行精确的修饰。然而,脱靶效果和低编辑效率是与该技术相关的一些主要挑战。为了克服这些问题,研究人员正在探索新的递送方法,并开发具有更高特异性的CRISPR/Cas系统。此外,在基因编辑中使用CRISPR存在伦理问题,包括潜在的意外后果和转基因生物的创造。通过严格的测试和严格的法规来解决这些问题非常重要。尽管面临这些挑战,CRISPR在癌症治疗中的潜在益处不容忽视.通过对癌细胞进行精确修饰,CRISPR可以为不同类型的癌症患者提供有针对性的有效治疗选择。需要进一步研究和开发CRISPR技术,以克服现有挑战并充分发挥其在癌症治疗中的潜力。
    CRISPR (Clustered Regularly Interspaced Short Palindromic Repeats) is a versatile technology that allows precise modification of genes. One of its most promising applications is in cancer treatment. By targeting and editing specific genes involved in cancer development and progression, CRISPR has the potential to become a powerful tool in the fight against cancer. This review aims to assess the recent progress in CRISPR technology for cancer research and to examine the obstacles and potential strategies to address them. The two most commonly used CRISPR systems for gene editing are CRISPR/Cas9 and CRISPR/Cas12a. CRISPR/Cas9 employs different repairing systems, including homologous recombination (HR) and nonhomologous end joining (NHEJ), to introduce precise modifications to the target genes. However, off-target effects and low editing efficiency are some of the main challenges associated with this technology. To overcome these issues, researchers are exploring new delivery methods and developing CRISPR/Cas systems with improved specificity. Moreover, there are ethical concerns surrounding using CRISPR in gene editing, including the potential for unintended consequences and the creation of genetically modified organisms. It is important to address these issues through rigorous testing and strict regulations. Despite these challenges, the potential benefits of CRISPR in cancer therapy cannot be overlooked. By introducing precise modifications to cancer cells, CRISPR could offer a targeted and effective treatment option for patients with different types of cancer. Further investigation and development of CRISPR technology are necessary to overcome the existing challenges and harness its full potential in cancer therapy.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    尽管广泛存在III型成簇的规则间隔的短回文重复序列,古细菌和细菌中的CRISPR相关(CRISPR-Cas),很少有抗CRISPR(Acr)蛋白抑制III型免疫,对它们的抑制机制知之甚少。这里,我们发现了一种III型CRISPR-Cas抑制剂,AcrIIIB2,由Sulfolobus病毒S.islandicus杆状病毒3(SIRV3)编码。AcrIIIB2抑制III-B型CRISPR-Cas对中/晚期表达病毒基因编码的原间隔区的免疫应答。对S.islandicusIII-B型CRISPR-CasCmr-α相关蛋白与AcrIIIB2之间相互作用的研究表明,Acr不与Csx1结合,而是与Cmr-α效应子复合物相互作用。此外,体外实验表明,AcrIIIB2可以阻断裂解的靶RNA与Cmr-α复合物的解离,从而抑制Cmr-α周转,从而通过III-B型CRISPR-Cas免疫阻止宿主细胞休眠和进一步的病毒基因组降解。
    Despite a wide presence of type III clustered regularly interspaced short palindromic repeats, CRISPR-associated (CRISPR-Cas) in archaea and bacteria, very few anti-CRISPR (Acr) proteins inhibiting type III immunity have been identified, and even less is known about their inhibition mechanism. Here, we present the discovery of a type III CRISPR-Cas inhibitor, AcrIIIB2, encoded by Sulfolobus virus S. islandicus rod-shaped virus 3 (SIRV3). AcrIIIB2 inhibits type III-B CRISPR-Cas immune response to protospacers encoded in middle/late-expressed viral genes. Investigation of the interactions between S. islandicus type III-B CRISPR-Cas Cmr-α-related proteins and AcrIIIB2 reveals that the Acr does not bind to Csx1 but rather interacts with the Cmr-α effector complex. Furthermore, in vitro assays demonstrate that AcrIIIB2 can block the dissociation of cleaved target RNA from the Cmr-α complex, thereby inhibiting the Cmr-α turnover, thus preventing host cellular dormancy and further viral genome degradation by the type III-B CRISPR-Cas immunity.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    由于噬菌体感染导致的细菌群落崩溃是奶酪制作过程中的主要风险。由于有毒噬菌体在牛奶发酵工厂中无处不在且多样化,使用耐噬菌体的乳酸菌(LAB)对于获得高质量的发酵乳制品至关重要。LAB物种嗜热链球菌包含两个II-A型CRISPR-Cas系统(CRISPR1和CRISPR3),可以有效防止噬菌体感染。然而,在酸奶和奶酪环境中出现了携带抗CRISPR蛋白(ACR)的强毒链球菌噬菌体,这些蛋白阻断了CRISPR-Cas系统的活性。例如,携带AcrIIA5的噬菌体可以阻碍CRISPR1和CRISPR3系统,而AcrIIA6只停止CRISPR1。这里,我们探索了第三种链球菌噬菌体抗CRISPR蛋白的活性和多样性,即AcrIIA3。我们能够证明AcrIIA3对嗜热链球菌的CRISPR3-Cas系统具有有效活性。我们使用AlphaFold2来推断AcrIIA3的结构,并且我们预测这一新的功能性ACR家族在毒力链球菌噬菌体中具有新的α螺旋折叠,没有以前鉴定的结构同源物。因为ACR蛋白在基因组编辑应用中被用作调节剂,我们还针对SpCas9测试了AcrIA3。我们发现AcrIA3可以阻断细菌中的SpCas9,但不能阻断人细胞中的SpCas9。了解反防御机制的多样性和功能对于设计长期稳定的发酵剂文化至关重要。
    Bacterial community collapse due to phage infection is a major risk in cheese making processes. As virulent phages are ubiquitous and diverse in milk fermentation factories, the use of phage-resistant lactic acid bacteria (LAB) is essential to obtain high-quality fermented dairy products. The LAB species Streptococcus thermophilus contains two type II-A CRISPR-Cas systems (CRISPR1 and CRISPR3) that can effectively protect against phage infection. However, virulent streptococcal phages carrying anti-CRISPR proteins (ACR) that block the activity of CRISPR-Cas systems have emerged in yogurt and cheese environments. For example, phages carrying AcrIIA5 can impede both CRISPR1 and CRISPR3 systems, while AcrIIA6 stops only CRISPR1. Here, we explore the activity and diversity of a third streptococcal phage anti-CRISPR protein, namely AcrIIA3. We were able to demonstrate that AcrIIA3 is efficiently active against the CRISPR3-Cas system of S. thermophilus. We used AlphaFold2 to infer the structure of AcrIIA3 and we predicted that this new family of functional ACR in virulent streptococcal phages has a new α-helical fold, with no previously identified structural homologs. Because ACR proteins are being explored as modulators in genome editing applications, we also tested AcrIIA3 against SpCas9. We found that AcrIIA3 could block SpCas9 in bacteria but not in human cells. Understanding the diversity and functioning of anti-defence mechanisms will be of importance in the design of long-term stable starter cultures.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

公众号