Anisakid nematodes

  • 文章类型: Journal Article
    异位症,由anisakid幼虫引起的,是一种重要的鱼类传播的人畜共患病。本研究旨在总结我国鱼类anisakid感染的流行情况。使用五个书目数据库(PubMed,CNKI,ScienceDirect,万方,和VIP中文期刊数据库)。最终纳入了40篇与中国鱼类anisakid感染有关的文章。异尖线虫在多种鱼类中普遍存在,中国鱼类anisakid线虫的总体聚集患病率为45.5%。鲜鱼的患病率最高(58.1%)。患病率最高的是华东地区(55.3%),东海鱼类的anisakid线虫患病率最高(76.8%)。按抽样年份进行的亚组分析表明,2001-2011年的感染率(51.0%)高于其他时期。对研究质量的分析表明,中等质量的研究报告的患病率最高(59.9%)。与其他季节相比,冬季患病率最高(81.8%)。肌肉中anisakid线虫的检出率较低(7.8%,95%CI:0.0-37.6)比其他鱼类器官高。我们的发现表明,anisakid感染在中国鱼类中仍然很常见。我们建议避免吃生鱼或未煮熟的鱼。区域,感染部位,鱼类状况和质量水平是主要的危险因素,在中国,需要对鱼类的anisakid感染进行持续监测。
    Anisakidosis, caused by anisakid larvae, is an important fish-borne zoonosis. This study aimed to summarize the prevalence of anisakid infection in fish in China. A systematic review and meta-analysis were performed using five bibliographic databases (PubMed, CNKI, ScienceDirect, WanFang, and VIP Chinese Journal Databases). A total of 40 articles related to anisakid infection in fish in China were finally included. Anisakid nematodes were prevalent in a wide range of fish species, and the overall pooled prevalence of anisakid nematodes in fish in China was 45.5%. Fresh fish had the highest prevalence rate (58.1%). The highest prevalence rate was observed in Eastern China (55.3%), and fish from East China Sea showed the highest prevalence of anisakid nematodes (76.8%). Subgroup analysis by sampling year suggested that the infection rate was higher during the years 2001-2011 (51.0%) than the other periods. Analysis of study quality revealed that the middle-quality studies reported the highest prevalence (59.9%). Compared with other seasons, winter had the highest prevalence (81.8%). The detection rate of anisakid nematodes in muscle was lower (7.8%, 95% CI: 0.0-37.6) than in other fish organs. Our findings suggested that anisakid infection was still common among fish in China. We recommend avoiding eating raw or undercooked fish. Region, site of infection, fish status and quality level were the main risk factors, and a continuous monitoring of anisakid infection in fish in China is needed.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    Anisakid nematode larvae (NL) in fish products comprise a risk to human health and, if visible, lead to the rejection of these products by consumers. Therefore, great efforts are being made for the identification of these anisakid larvae to estimate the potential consumer health risk as well as to develop effective detection methods in order to prevent the introduction of heavily infected fish products into the market. The tasks of national reference laboratories include the improvement of detection methods and to promote their further development. As a prerequisite for improved detection, it is important to understand the structural properties of anisakid NL and compounds produced during host-parasite interactions. This review provides an overview of the intrinsic properties of anisakid NL and reports the latest detection methods in published literature. First, in order to define the potentially interesting intrinsic properties of anisakid nematodes for their detection, anatomy and compounds involved in host-parasite interactions are summarised. These can be used for various detection approaches, such as in the medical field or for allergen detection in fish products. In addition, fluorescence characteristics and their use as both established and promising candidates for detection methods, especially in the field of optical sensing technologies, are presented. Finally, different detection and identification methods applied by the fish processing industries and by control laboratories are listed. The review intends to highlight trends and provide suggestions for the development of improved detection and identification methods of anisakid NL in fish products.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

  • 文章类型: Journal Article
    Anisakiasis is a gastrointestinal disease caused by parasitic anisakid nematodes, mainly Anisakis simplex sensu stricto (A. simplex). Anisakiasis is prevalent in Japan and approximately 40% of anisakiasis cases in Tokyo occur through the consumption of raw or marinated mackerel. However, in 2018, there was a sudden increase in the number of the food poisoning cases in Tokyo caused by consumption of skipjack tuna (Katsuwonus pelamis). Therefore, we investigated anisakiasis cases resulting from ingestion of skipjack tuna in Tokyo, and surveyed the presence of Anisakis larvae in skipjack tuna in 2018 and 2019. Nineteen samples from 15 patients (13 in 2018 and 2 in 2019) with anisakiasis surely caused by ingestion of skipjack tuna were all identified as A. simplex. The higher mean abundance of Anisakis simplex larvae in skipjack tuna muscle in May 2018 (1.30; 13 larvae/10 fishes) compared to that in the other periods was regarded as a contributing factor in the increase in anisakiasis cases by ingesting skipjack tuna in 2018. To verify whether Anisakis larvae migrate from the visceral organs to the muscle during the period from fishing on the boat until processing for sale, the number of Anisakis larvae in skipjack tuna caught from August to November 2018 was investigated by removing the visceral organs at three different timings, i.e., immediately after catching, after landing, and after transport to the laboratory. Anisakis larvae were detected in the muscle irrespective of the timings at which visceral organs were removed. All larvae from the muscle were detected only from the ventral part and were identified as A. simplex. We thus consider that avoiding raw consumption of the ventral muscle should be an effective measure to prevent anisakiasis.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

  • 文章类型: Journal Article
    港口海豚(Phocoenaphocoena)是德国北海和波罗的海中唯一的原生鲸类物种,也是Anisakis的最后寄主(A.)单工,感染其第一和第二胃隔室,并可能导致慢性溃疡性胃炎。单纯形虫属Anisakidae家族(Ascaridoidea,横纹肌)以及phocine胃线虫物种Pseudoterranova(P.)蜕膜和卷心菜(C.)。这些线虫物种是人畜共患anisakidosis的主要病原体。由于同胞物种的形成,这些具有包括甲壳类动物和商业上重要的鱼类在内的生命周期的属的分类学很复杂。在研究区域中,对感染海豚的anisakid物种知之甚少。由于高度的形态和遗传相似性,成熟的线虫和幼虫阶段通常只能通过分子方法识别。限制性片段长度多态性(RFLP)方法是测序的替代方法,已用于鉴定北海港口海豚中发现的anisakid线虫,波罗的海和北大西洋首次达到物种水平。在研究领域,选择来自不同港口海豚宿主的五种胃线虫进行限制酶HinfI的研究,RsaI和HaeIII,它们能够通过特征性的条带模式区分几种anisakid线虫。异语单纯形s.s.是在北海和波罗的海海豚中发现的优势物种,由所有三种限制酶鉴定。此外,HinfI在北海样品中测定了A.simplexs.s.和A.pegreffii的杂种。在北大西洋标本中,A.单纯形s.s.,P.decipienss.s.andHysterothylacium(H.)通过所有酶鉴定了aduncum。这证明了RFLP方法和所选的限制酶对于鉴定影响海洋哺乳动物健康的多种anisakid线虫的物种的价值。
    Harbour porpoises (Phocoena phocoena) are the only native cetacean species in the German North and Baltic Seas and the final host of Anisakis (A.) simplex, which infects their first and second gastric compartments and may cause chronic ulcerative gastritis. Anisakis simplex belongs to the family Anisakidae (Ascaridoidea, Rhabditida) as well as the phocine gastric nematode species Pseudoterranova (P.) decipiens and Contracaecum (C.) osculatum. These nematode species are the main causative agents for the zoonosis anisakidosis. The taxonomy of these genus with life cycles including crustaceans and commercially important fish is complex because of the formation of sibling species. Little is known about anisakid species infecting porpoises in the study area. Mature nematodes and larval stages are often identifiable only by molecular methods due to high morphological and genetic similarity. The restriction fragment length polymorphism (RFLP) method is an alternative to sequencing and was applied to identify anisakid nematodes found in harbour porpoises from the North Sea, Baltic Sea and North Atlantic to species level for the first time. In the study areas, five gastric nematodes from different harbour porpoise hosts were selected to be investigated with restriction enzymes HinfI, RsaI and HaeIII, which were able to differentiate several anisakid nematode species by characteristic banding patterns. Anisakis simplex s. s. was the dominant species found in the North Sea and Baltic porpoises, identified by all three restriction enzymes. Additionally, a hybrid of A. simplex s. s. and A. pegreffii was determined by HinfI in the North Sea samples. Within the North Atlantic specimens, A. simplex s. s., P. decipiens s. s. and Hysterothylacium (H.) aduncum were identified by all enzymes. This demonstrates the value of the RFLP method and the chosen restriction enzymes for the species identification of a broad variety of anisakid nematodes affecting the health of marine mammals.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

       PDF(Pubmed)

  • 文章类型: Journal Article
    Due to its remote and isolated location, Antarctica is home to a unique diversity of species. The harsh conditions have shaped a primarily highly adapted endemic fauna. This includes the notothenioid family Channichthyidae. Their exceptional physiological adaptations have made this family of icefish the focus of many studies. However, studies on their ecology, especially on their parasite fauna, are comparatively rare. Parasites, directly linked to the food chain, can function as biological indicators and provide valuable information on host ecology (e.g., trophic interactions) even in remote habitats with limited accessibility, such as the Southern Ocean. In the present study, channichthyid fish (Champsocephalus gunnari: n = 25, Chaenodraco wilsoni: n = 33, Neopagetopsis ionah: n = 3, Pagetopsis macropterus: n = 4, Pseudochaenichthys georgianus: n = 15) were collected off South Shetland Island, Elephant Island, and the tip of the Antarctic Peninsula (CCAML statistical subarea 48.1). The parasite fauna consisted of 14 genera and 15 species, belonging to the six taxonomic groups including Digenea (four species), Nematoda (four), Cestoda (two), Acanthocephala (one), Hirudinea (three), and Copepoda (one). The stomach contents were less diverse with only Crustacea (Euphausiacea, Amphipoda) recovered from all examined fishes. Overall, 15 new parasite-host records could be established, and possibly a undescribed genotype or even species might exist among the nematodes.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

       PDF(Pubmed)

  • DOI:
    文章类型: Journal Article
    BACKGROUND: Anisakid nematodes are common parasites of fish, mammals, fish-eating birds, and reptiles with a worldwide distribution, causing diseases in human, fish and important economic losses.
    METHODS: A preliminary epidemiological study was carried out on Anisakid nematodes larvae in some commercially important fish species to evaluate the anisakid nematode larvae from greater lizardfish, (Saurida tumbil), Japanese thread fin bream (Nemipterus japonicus), crocodile longtom (Tylosurus crocodilus crocodiles) and longfin trevally (Carangoides armatus) from the Persian Gulf of Iran.
    RESULTS: The collected larvae were identified mainly as the third larval stage (L3) of Hysterothylacium larval type A, B and C, Anisakis sp., Raphidascaris sp., Pseudoterranova sp. and Philometra sp. (Nematoda: Philometridae). The prevalence of Anisakid larvae infection of examined fishes was 97.2% in N. japonicus, 90.3% in S. tumbil, 20.5% in crocodile longtom and 5.5% in longfin trevally. Anisakis type III for the first time was different from Anisakis type I and Anisakis type II.
    CONCLUSIONS: Zoonotic anisakids by high prevalence in edible fish could be a health hazard for people. So health practices should be considered in these areas.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    Anisakiasis/anisakidosis caused by anisakid nematodes is an emerging infectious disease that can cause a wide range of clinical syndromes and are difficult to diagnose and treat in humans. In spite of their significance as pathogens, the systematics, genetics, epidemiology and biology of these parasites remain poorly understood. In the present study, we sequenced the complete mitochondrial (mt) genome of Pseudoterranova azarasi, which is one of the most important zoonotic anisakid parasites. The circular mt genome is 13,954 bp in size and encodes of 36 genes, including 12 protein-coding, 2 ribosomal RNA and 22 transfer RNA genes. The mt gene order of P. azarasi is the same as those of Ascaris spp. (Ascarididae), Toxocara spp. (Toxocaridae) and Anisakis simplex (Anisakidae), but distinct from those of Ascaridia spp. (Ascaridiidae) and Cucullanus robustus (Cucullanidae). Phylogenetic analyses based on concatenated amino acid sequences of 12 protein-coding genes by Bayesian inference (BI) showed that Pseudoterranova were more closely related to Anisakis than they were to Contracaecum with strong a posterior probability support. This mt genome provides a novel genetic markers for exploring cryptic/sibling species and host affiliations, and should have implications for the diagnosis, prevention and control of anisakidosis in humans.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

公众号