Ammonia synthesis

氨合成
  • 文章类型: Journal Article
    在过去的十年中,用于优化单原子催化剂(SAC)催化性能的配位工程策略得到了迅速发展。然而,以前关于硝酸盐还原反应(NO3RR)的铜SAC的报道主要集中在对称配位构型上,例如Cu-N4和Cu-N3。此外,SACs的配位环境和催化性质的调控机制尚未得到很好的证实。在这里,我们通过引入Cu-O和Cu-N的不饱和杂原子配位来破坏铜原子的局部对称结构,以实现Cu-N1O2SAC的配位去对称化。Cu-N1O2SAC表现出有效的硝酸盐到氨的转化,具有〜96.5%的高FE和相对于RHE的-0.60V的3120μgNH3h-1cm-2的产率。如原位拉曼光谱所示,催化剂促进了NO3-的积累和*NO2的选择性吸附,这在表面偶极矩和轨道杂化的理论研究中得到了进一步证实。我们的工作说明了配位去对称化与铜SAC对NO3RR的催化性能之间的相关性。
    Coordination engineering strategy for optimizing the catalytic performance of single-atom catalysts (SACs) has been rapidly developed over the last decade. However, previous reports on copper SACs for nitrate reduction reactions (NO3RR) have mostly focused on symmetric coordination configurations such as Cu-N4 and Cu-N3. In addition, the mechanism in terms of the regulation of coordination environment and catalytic properties of SACs has not been well demonstrated. Herein, we disrupted the local symmetric structure of copper atoms by introducing unsaturated heteroatomic coordination of Cu-O and Cu-N to achieve the coordination desymmetrization of Cu-N1O2 SACs. The Cu-N1O2 SACs exhibit an efficient nitrate-to-ammonia conversion with a high FE of ~96.5 % and a yield rate of 3120 μg NH3 h-1 cm-2 at -0.60 V vs RHE. As indicated by in situ Raman spectra, the catalysts facilitate the accumulation of NO3 - and the selective adsorption of *NO2, which were further confirmed by the theoretical study of surface dipole moment and orbital hybridization. Our work illustrated the correlation between the coordination desymmetrization and the catalytic performance of copper SACs for NO3RR.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    电催化亚硝酸盐(NO2-)还原为氨(NH3)是减少污染和辅助工业生产的一种有前途的方法。然而,进展是有限的缺乏有效的选择性催化剂和模糊的催化机理。本研究探讨了PdCu合金在氧缺陷TiO2-x上的负载,通过调节局部电子密度,导致NH3产率显着增加(相对于可逆氢电极,在-0.6V时从70.6增加到366.4µmolcm-2h-1)。原位和操作研究表明,NO2还原为NH3涉及逐渐的脱氧和氢化。该工艺还表现出优异的选择性和稳定性,具有循环和50小时稳定性试验的长期耐久性。密度泛函理论(DFT)计算表明,PdCu合金的引入进一步放大了氧空位(Ovs)的电子密度。此外,在PdCu加载后,Ti-O键随着Ti3d的d带中心的上升而增强,促进*NO2的吸附和活化。此外,Ovs和PdCu合金的存在降低了脱氧和氢化的能量障碍,导致NH3的高产率和选择性。这种控制局部电子密度的见解为推进可持续的NH3合成方法提供了有价值的见解。
    Electrocatalytic nitrite (NO2 -) reduction to ammonia (NH3) is a promising method for reducing pollution and aiding industrial production. However, progress is limited by the lack of efficient selective catalysts and ambiguous catalytic mechanisms. This study explores the loading of PdCu alloy onto oxygen defective TiO2-x, resulting in a significant increase in NH3 yield (from 70.6 to 366.4 µmol cm-2 h-1 at -0.6 V vs reversible hydrogen electrode) by modulating localized electron density. In situ and operando studies illustrate that the reduction of NO2 - to NH3 involves gradual deoxygenation and hydrogenation. The process also demonstrated excellent selectivity and stability, with long-term durability in cycling and 50 h stability tests. Density functional theory (DFT) calculations elucidate that the introduction of PdCu alloys further amplified electron density at oxygen vacancies (Ovs). Additionally, the Ti─O bond is strengthened as the d-band center of the Ti 3d rising after PdCu loading, facilitating the adsorption and activation of *NO2. Moreover, the presence of Ovs and PdCu alloy lowers the energy barriers for deoxygenation and hydrogenation, leading to high yield and selectivity of NH3. This insight of controlling localized electron density offers valuable insights for advancing sustainable NH3 synthesis methods.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    从氮源生产氨(NH3)涉及不同中间体的竞争性吸附和多个电子和质子转移,在催化剂设计中提出了巨大的挑战。在自然界中,固氮酶使用两种成分蛋白质将氮还原为NH3,其中电子和质子从Fe蛋白递送至MoFe蛋白中的活性位点以转移至结合的N2。我们从这种结构酶学中获得灵感,并设计了由硫掺杂的碳负载的钌(Ru)单原子(SAs)和纳米颗粒(NP)组成的两组分金属-硫-碳(M-S-C)催化剂,用于电化学还原硝酸盐(NO3-)到NH3。该催化剂在200小时内表现出显著的NH3产率约为37mgL-1h-1,法拉第效率约为97%,表现优于仅由SA或NP组成的那些,甚至超过大多数报道的电催化剂。我们的实验和理论研究揭示了RuSA与S的配位在促进HONO中间体的形成以及随后在NP表面附近的还原反应中的关键作用。这项研究证明了对M-S-Cs在氨合成过程中如何作为合成固氮酶模拟物的更好理解,并有助于未来基于机理的催化剂设计。
    The production of ammonia (NH3) from nitrogen sources involves competitive adsorption of different intermediates and multiple electron and proton transfers, presenting grand challenges in catalyst design. In nature nitrogenases reduce dinitrogen to NH3 using two component proteins, in which electrons and protons are delivered from Fe protein to the active site in MoFe protein for transfer to the bound N2. We draw inspiration from this structural enzymology, and design a two-component metal-sulfur-carbon (M-S-C) catalyst composed of sulfur-doped carbon-supported ruthenium (Ru) single atoms (SAs) and nanoparticles (NPs) for the electrochemical reduction of nitrate (NO3-) to NH3. The catalyst demonstrates a remarkable NH3 yield rate of ~37 mg L-1 h-1 and a Faradaic efficiency of ~97% for over 200 hours, outperforming those consisting solely of SAs or NPs, and even surpassing most reported electrocatalysts. Our experimental and theoretical investigations reveal the critical role of Ru SAs with the coordination of S in promoting the formation of the HONO intermediate and the subsequent reduction reaction over the NP-surface nearby. This study proves a better understanding of how M-S-Cs act as a synthetic nitrogenase mimic during ammonia synthesis, and contributes to the future mechanism-based catalyst design.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    电催化硝酸盐(NO3-)还原为氨(NRA)为氨合成提供了一条有前途的途径。界面电子相互作用(IEI)可以调节电化学应用中催化剂的物理化学能力,而IEI对电催化NRA的影响在目前的文献中仍未被探索。在这项研究中,在中性介质中制备了用于NRA的高效电极Ag修饰的Co3O4(Ag1.5Co/CC),表现出令人印象深刻的96.86%的硝酸盐转化率,氨的法拉第效率为96.11%,和~100%的氨选择性。值得注意的是,Ag1.5Co/CC的固有活性是Ag纳米颗粒(Ag/CC)的约81倍。多重表征和理论计算证实了Ag和Co3O4之间存在IEI,这稳定了Co3O4内的CoO6八面体,并显着促进了反应物(NO3-)以及中间体(NO2-和NO)的吸附,同时压制Heyrovsky的脚步,从而提高硝酸盐的电还原效率。此外,我们的发现揭示了不同活性位点之间的协同作用,可以实现NRA的串联催化:NO3-还原为NO2-主要发生在Ag位点,而NO2-倾向于在Co位点氢化为氨。这项研究为高性能NRA电催化剂的开发提供了有价值的见解。
    Electrocatalytic nitrate (NO3-) reduction to ammonia (NRA) offers a promising pathway for ammonia synthesis. The interfacial electronic interactions (IEIs) can regulate the physicochemical capabilities of catalysts in electrochemical applications, while the impact of IEIs on electrocatalytic NRA remains largely unexplored in current literature. In this study, the high-efficiency electrode Ag-modified Co3O4 (Ag1.5Co/CC) is prepared for NRA in neutral media, exhibiting an impressive nitrate conversion rate of 96.86%, ammonia Faradaic efficiency of 96.11%, and ammonia selectivity of ~100%. Notably, the intrinsic activity of Ag1.5Co/CC is ~81 times that of Ag nanoparticles (Ag/CC). Multiple characterizations and theoretical computations confirm the presence of IEIs between Ag and Co3O4, which stabilize the CoO6 octahedrons within Co3O4 and significantly promote the adsorption of reactants (NO3-) as well as intermediates (NO2- and NO), while suppressing the Heyrovsky step, thereby improving nitrate electroreduction efficiency. Furthermore, our findings reveal a synergistic effect between different active sites that enables tandem catalysis for NRA: NO3- reduction to NO2- predominantly occurs at Ag sites while NO2- tends to hydrogenate to ammonia at Co sites. This study offers valuable insights for the development of high-performance NRA electrocatalysts.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    尖晶石钴氧化物(Co3O4)已成为一类有前途的催化剂,用于电化学硝酸盐还原反应(eNO3RR)到氨,提供低成本等优点,高活性,和选择性。然而,晶体学方面在确定催化剂性能方面的具体作用仍然难以捉摸,阻碍了高效催化剂的发展。在这项研究中,我们已经合成了各种Co3O4纳米结构,其暴露面{100},{111},{110},和{112},旨在研究eNO3RR活性对晶体学方面的依赖性。在测试的催化剂中,Co3O4{111}显示出最佳性能,在-0.6V与RHE下,氨的法拉第效率为99.1±1.8%,产率为35.2±0.6mgh-1cm-2。实验和理论结果揭示了一个转变过程,其中活性相从Co3O4演变为具有氧空位(Ov)的Co3O4-x,其次是Co3O4-x-Ov/Co(OH)2杂化物,最后是Co(OH)2。这个过程在所有方面都被观察到,但Ov和Co(OH)2的形成在(111)面上最为迅速。Ov的存在将*NH2中间体形成的自由能从1.81降至-0.53eV,密集重建的Co(OH)2上的大量活性位点使Co3O4{111}成为通过eNO3RR合成氨的理想催化剂。这项工作提供了对现实活动组件的理解的见解,通过调整暴露的方面,为开发用于氨合成的高效Co基尖晶石催化剂提供了一种策略,并有助于进一步推进eNO3RR领域催化剂的设计和优化。
    Spinel cobalt oxides (Co3O4) have emerged as a promising class of catalysts for the electrochemical nitrate reduction reaction (eNO3RR) to ammonia, offering advantages such as low cost, high activity, and selectivity. However, the specific role of crystallographic facets in determining the catalysts\' performance remains elusive, impeding the development of efficient catalysts. In this study, we have synthesized various Co3O4 nanostructures with exposed facets of {100}, {111}, {110}, and {112}, aiming to investigate the dependence of the eNO3RR activity on the crystallographic facets. Among the catalysts tested, Co3O4 {111} shows the best performance, achieving an ammonia Faradaic efficiency of 99.1 ± 1.8% with a yield rate of 35.2 ± 0.6 mg h-1 cm-2 at -0.6 V vs RHE. Experimental and theoretical results reveal a transformation process in which the active phases evolve from Co3O4 to Co3O4-x with oxygen vacancy (Ov), followed by a Co3O4-x-Ov/Co(OH)2 hybrid, and finally Co(OH)2. This process is observed for all facets, but the formation of Ov and Co(OH)2 is the most rapid on the (111) surface. The presence of Ov significantly reduces the free energy of the *NH2 intermediate formation from 1.81 to -0.53 eV, and plentiful active sites on the densely reconstructed Co(OH)2 make Co3O4 {111} an ideal catalyst for ammonia synthesis via eNO3RR. This work provides insights into the understanding of the realistic active components, offers a strategy for developing highly efficient Co-based spinel catalysts for ammonia synthesis through tuning the exposed facets, and helps further advance the design and optimization of catalysts in the field of eNO3RR.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    氨(NH3)是一种用途广泛的重要化合物,目前是通过要求苛刻的哈伯-博世工艺生产的。电催化硝酸盐还原成氨(NRA)最近已成为在环境条件下合成NH3的可持续方法。然而,NRA催化是一个复杂的多步骤电化学过程,具有竞争性的析氢反应,通常导致NH3合成的选择性差和产率低。具有最大的原子利用率和明确的催化位点,单原子催化剂(SAC)表现出高活性,对各种催化反应的选择性和稳定性。最近,许多SAC已被开发为有前途的NRA电催化剂,但迄今为止,尚未对影响其NRA绩效的关键因素进行系统讨论。这篇综述集中在SAC在NRA催化方面的最新突破,包括催化剂制备,催化剂表征和理论见解。此外,讨论了提高SACNRA绩效的挑战和机遇,目的是在开发用于高效NH3合成的高性能SAC方面取得进一步进展。
    Ammonia (NH3) is a versatile and important compound with a wide range of uses, which is currently produced through the demanding Haber-Bosch process. Electrocatalytic nitrate reduction into ammonia (NRA) has recently emerged as a sustainable approach for NH3synthesis under ambient conditions. However, the NRA catalysis is a complex multistep electrochemical process with competitive hydrogen evolution reaction that usually results in poor selectivity and low yield rate for NH3synthesis. With maximum atom utilization and well-defined catalytic sites, single atom catalysts (SACs) display high activity, selectivity and stability toward various catalytic reactions. Very recently, a number of SACs have been developed as promising NRA electrocatalysts, but systematical discussion about the key factors that affect their NRA performance is not yet to be summarized to date. This review focuses on the latest breakthroughs of SACs toward NRA catalysis, including catalyst preparation, catalyst characterization and theoretical insights. Moreover, the challenges and opportunities for improving the NRA performance of SACs are discussed, with an aim to achieve further advancement in developing high-performance SACs for efficient NH3synthesis.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    由于非均相催化中结垢关系的内在约束,推进能源密集型Haber-Bosch工艺面临重大挑战。在这里,我们报道了一种弯曲“跷跷板效应”来调节定制的α-Fe金属材料(α-Fe-110s)上的比例关系的方法,实现1260μmolg催化剂-1h-1的高效光驱动热催化氨合成速率,无需额外加热。具体来说,α-Fe-110s的热催化活性通过新型阶梯状{110}表面显著增强,与具有助催化剂的商业熔融铁催化剂相比,在350°C下表现出3.8倍的增加。光诱导的热电子转移进一步加速了二氮的解离和氢化,有效地克服了同一站点上缩放关系的局限性。因此,在相同的辐照温度下,α-Fe-110s的产氨率进一步提高了30倍。这项工作设计了一种有效且可持续的氨合成系统,并为调节多相催化中的结垢关系提供了一种新颖的方法。
    Advancing the energy-intensive Haber-Bosch process faces significant challenges due to the intrinsic constraints of scaling relations in heterogeneous catalysis. Herein, we reported an approach of bending the \"seesaw effect\" to regulate the scaling relations over a tailored α-Fe metallic material (α-Fe-110s), realizing highly efficient light-driven thermal catalytic ammonia synthesis rate of 1260 μmol gcatalyst-1 h-1 without additional heating. Specifically, the thermal catalytic activity of α-Fe-110s was significantly enhanced by the novel stepped {110} surface, exhibiting a 3.8-fold increase compared to the commercial fused-iron catalyst with promoters at 350 °C. The photo-induced hot electron transfer further accelerates the dinitrogen dissociation and hydrogenation simultaneously, effectively overcoming the limitation of scaling relation over identical sites. Consequently, the ammonia production rate of α-Fe-110s was further enhanced by 30 times at the same temperature with irradiation. This work designs an efficient and sustainable system for ammonia synthesis and provides a novel approach for regulating the scaling relations in heterogeneous catalysis.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    将硝酸盐(NO3-)电化学转化为氨(NH3)是减少环境中硝酸盐污染物的有效途径,氨合成的低压法。然而,充足的H*中间体被高度期望用于NO3-加氢,同时抑制竞争性的氢析出。在这里,研究了H*覆盖率对Cu电催化剂氨合成中NO3RR的影响。H*覆盖率可以通过改变Pd纳米颗粒尺寸来调节。优化的Pd@Cu的平均Pd尺寸为2.88nm,显示出最佳的NO3RR活性,从500ppmNO3-的工业废水水平中,实现了97%的最大法拉第效率(相对于RHE为-0.8V)和21mgh-1cm-2的NH3产率。原位电化学实验表明,2.88nm的Pd颗粒可以通过很好地调节吸附的H*物质的覆盖率来促进NO3-氢化为NH3。耦合阳极甘油氧化反应,在膜电极组件电解槽中成功获得了铵和甲酸盐作为增值产品。这项工作为获得用于氢化的尺寸依赖性H*中间体提供了可行的策略。
    Electrochemical conversion of nitrate (NO3 -) to ammonia (NH3) is an effective approach to reduce nitrate pollutants in the environment and also a promising low-temperature, low-pressure method for ammonia synthesis. However, adequate H* intermediates are highly expected for NO3 - hydrogenation, while suppressing competitive hydrogen evolution. Herein, the effect of H* coverage on the NO3RR for ammonia synthesis by Cu electrocatalysts is investigated. The H* coverage can be adjusted by changing Pd nanoparticle sizes. The optimized Pd@Cu with an average Pd size of 2.88 nm shows the best activity for NO3RR, achieving a maximum Faradaic efficiency of 97% (at -0.8 V vs RHE) and an NH3 yield of 21 mg h-1 cm- 2, from an industrial wastewater level of 500 ppm NO3 -. In situ electrochemical experiments indicate that Pd particles with 2.88 nm can promote NO3 - hydrogenation to NH3 via well-modulated coverage of adsorbed H* species. Coupling the anodic glycerol oxidation reaction, ammonium and formate are successfully obtained as value-added products in a membrane electrode assembly electrolyzer. This work provides a feasible strategy for obtaining size-dependent H* intermediates for hydrogenation.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    合理设计光催化剂对于太阳能驱动的氮还原反应(NRR)至关重要,因为它具有稳定的N=N三键。金属有机骨架(MOF)被认为是有希望的候选物,但存在活性位点不足和电荷传输较差的问题。在这里,它被证明结合了3d金属离子,如锌(Zn)或铁(Fe)离子,与原始Al-PMOF(35.4µggcat-1h-1)相比,加入Al配位卟啉MOF(Al-PMOF)可以提高88.7和65.0µggcat-1h-1、2.5和1.8倍的氨产量,分别。通过同位素标记实验验证氨(NH3)的来源。将Zn或Fe掺入Al-PMOF会在Al-PMOF中产生活性位点,也就是说,Zn-N4或Fe-N4位点,这不仅促进了N2分子的吸附和活化,而且抑制了电荷重组。光物理和理论研究进一步揭示了在插入3d金属离子时,最低未占据分子轨道(LUMO)能级的上移到更高能的位置(Zn比Fe的偏移更大)。促进氮活化,抑制电荷复合,Al-PMOF(3d金属)中的更负LUMO水平有助于比原始Al-PMOF更高的光催化活性。这项工作为设计有效的太阳能到化学转化的光催化剂提供了一个有前途的策略。
    Rationally designing photocatalysts is crucial for the solar-driven nitrogen reduction reaction (NRR) due to the stable N≡N triple bond. Metal-organic frameworks (MOFs) are considered promising candidates but suffer from insufficient active sites and inferior charge transport. Herein, it is demonstrated that incorporating 3d metal ions, such as zinc (Zn) or iron (Fe) ions, into Al-coordinated porphyrin MOFs (Al-PMOFs) enables the enhanced ammonia yield of 88.7 and 65.0 µg gcat -1 h-1, 2.5- and 1.8-fold increase compared to the pristine Al-PMOF (35.4 µg gcat -1 h-1), respectively. The origin of ammonia (NH3) is verified via isotopic labeling experiments. Incorporating Zn or Fe into Al-PMOF generates active sites in Al-PMOF, that is, Zn-N4 or Fe-N4 sites, which not only facilitates the adsorption and activation of N2 molecules but suppresses the charge recombination. Photophysical and theoretical studies further reveal the upshift of the lowest unoccupied molecular orbital (LUMO) level to a more energetic position upon inserting 3d metal ions (with a more significant shift in Zn than Fe). The promoted nitrogen activation, suppressed charge recombination, and more negative LUMO levels in Al-PMOF(3d metal) contribute to a higher photocatalytic activity than pristine Al-PMOF. This work provides a promising strategy for designing photocatalysts for efficient solar-to-chemical conversion.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    通过选择性八电子转移硝酸盐还原反应将硝酸盐电还原为氨提供了一种有前途的方法,低能耗,无污染,替代Haber-Bosch方法的绿色NH3合成策略。然而,实现高NH4+选择性和从NO3--N到NH4+-N的完全转化仍然是一个巨大的挑战。在这里,我们报告成分可调的Cu2O@CoO蛋黄壳纳米立方体具有可调的内部空隙空间和不同的活动中心,有利于Cu2O上的NO3-快速级联转化为NO2-,CoO上的NO2-快速级联转化为NH4。Cu2O@CoO蛋黄壳纳米立方体在宽的潜在窗口(-0.2V至-0.9V相对于RHE)上表现出超NH4+法拉第效率(>99%),具有15.27mgh-1cm-2的相当大的NH4+产率和出色的循环稳定性和长期计时电流耐久性。Cu2O@CoO蛋黄壳纳米立方体在稀(500ppm)和高浓度(0.1和1M)NO3-电解质中表现出优异的NO3-N到NH4-N转化效率,分别。配备Cu2O@CoO蛋黄壳纳米管的硝酸盐电解膜电极组装系统在1.9-2.3V的电池电压下可提供超过99.8%的NH4+法拉第效率。
    The electroreduction of nitrate to ammonia via a selective eight-electron transfer nitrate reduction reaction offers a promising, low energy consumption, pollution-free, green NH3 synthesis strategy alternative to the Haber-Bosch method. However, it remains a great challenge to achieve high NH4+ selectivity and complete conversion from NO3--N to NH4+-N. Herein, we report ingredients adjustable Cu2O@CoO yolk-shell nanocubes featured with tunable inner void spaces and diverse activity centers, favoring the rapid cascade conversion of NO3- into NO2- on Cu2O and NO2- into NH4+ on CoO. Cu2O@CoO yolk-shell nanocubes exhibit super NH4+ Faradaic efficiencies (>99%) over a wide potential window (-0.2 V to -0.9 V versus RHE) with a considerable NH4+ yield rate of 15.27 mg h-1 cm-2 and fantastic cycling stability and long-term chronoamperometric durability. Cu2O@CoO yolk-shell nanocubes exhibited glorious NO3--N to NH4+-N conversion efficiency in both dilute (500 ppm) and highly concentrated (0.1 and 1 M) NO3- electrolytes, respectively. The nitrate electrolysis membrane electrode assembly system equipped with Cu2O@CoO yolk-shell nanocubes delivers over 99.8% NH4+ Faradaic efficiency at cell voltages of 1.9-2.3 V.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

公众号