Algal polysaccharide

  • 文章类型: Journal Article
    皮肤是身体的第一道屏障,时刻为抵御侵袭性病原体和环境压力而保持警惕。有害暴露的皮肤代谢变化,皮肤功能障碍和疾病。大量研究报道,从海藻中提取的多糖在治疗皮肤病方面表现出多维生物活性。然而,很少有文献系统地对它们进行评论。本文的目的是总结结构,藻多糖对皮肤的生物活性和结构-功能关系。藻类多糖显示抗氧化,免疫调节,水化调节,抗黑色素生成和细胞外基质(ECM)调节能力通过多路径方式在皮肤。这些生物活性由各种参数决定,包括海藻种类,分子量,单糖组成和取代基团。此外,还阐述了藻类衍生的多糖在皮肤护理和治疗中的潜在用途。藻类多糖是为皮肤提供抗衰老功效的制剂中的潜在成分。
    Skin is the first barrier of body which stands guard for defending aggressive pathogens and environmental pressures all the time. Cutaneous metabolism changes in harmful exposure, following with skin dysfunctions and diseases. Lots of researches have reported that polysaccharides extracted from seaweeds exhibited multidimensional bioactivities in dealing with skin disorder. However, few literature systematically reviews them. The aim of the present paper is to summarize structure, bioactivities and structure-function relationship of algal polysaccharides acting on skin. Algal polysaccharides show antioxidant, immunomodulating, hydration regulating, anti-melanogenesis and extracellular matrix (ECM) regulating abilities via multipath ways in skin. These bioactivities are determined by various parameters, including seaweed species, molecular weight, monosaccharides composition and substitute groups. In addition, potential usages of algae-derived polysaccharides in skin care and therapy are also elaborated. Algal polysaccharides are potential ingredients in formulation that providing anti-aging efficacy for skin.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Video-Audio Media
    背景:海洋微藻(浮游植物)介导了全球近一半的光合二氧化碳固定,因此在全球碳循环中起着关键作用,在大量浮游植物开花期间最突出。浮游植物生物量由相当比例的多糖组成,其中大部分被异养细菌迅速再矿化。我们分析了多样性,活动,在HelgolandRoads(北海南部)以高分辨率的时间分辨率在不同大小的春季浮游植物盛开期间,这种多糖降解细菌的功能潜力,物理化学,生物多样性,宏基因组,和元蛋白质组分析。
    结果:突出的活性0.2-3µm自由生活进化枝包括Aurantivirga,\"Formosa\",CD。Prosiliicoccus,NS4NS5Amylibacter,Planktomarina,SAR11Ia,SAR92和SAR86,而BD1-7,葡萄科,Nitrincoleaceae,菊科,硫杆菌属,NS9,杆菌属,Lentimonas,CL500-3,Algibacter,和Glaciecola主导3-10µm和>10µm颗粒。在编码的多糖靶向酶的分类组成和库方面,颗粒附着的细菌更加多样化,并且随着时间的推移表现出更动态的适应性变化。总的来说,获得了305个物种水平的宏基因组组装基因组,包括152个颗粒附着的细菌,其中100个在采样地点是新颖的,其中76个代表新物种。与自由生活的细菌相比,它们具有平均更大的宏基因组组装基因组和更高比例的多糖利用基因座。后者被预测为目标更广泛的多糖底物,范围从易溶,简单的结构化储存多糖(例如,laminarin,α-葡聚糖)溶解性较低,复杂的结构,或分泌的多糖(例如,木聚糖,纤维素,果胶)。特别是,在丰富且活性颗粒附着的细菌中,靶向难溶性或复杂多糖的潜力更为普遍。
    结论:颗粒附着细菌仅占所有水华相关细菌的1%,然而,我们的数据表明,许多丰富的活性进化枝在许多重要类别的藻类聚糖的溶解和随后的降解中起着关键的把关作用。因此,在最活跃的颗粒附着进化枝中,多糖生态位的高度多样性是藻类多糖比例的决定因素,藻类多糖在通常短暂的浮游植物水华事件中可以迅速再矿化。视频摘要。
    BACKGROUND: Marine microalgae (phytoplankton) mediate almost half of the worldwide photosynthetic carbon dioxide fixation and therefore play a pivotal role in global carbon cycling, most prominently during massive phytoplankton blooms. Phytoplankton biomass consists of considerable proportions of polysaccharides, substantial parts of which are rapidly remineralized by heterotrophic bacteria. We analyzed the diversity, activity, and functional potential of such polysaccharide-degrading bacteria in different size fractions during a diverse spring phytoplankton bloom at Helgoland Roads (southern North Sea) at high temporal resolution using microscopic, physicochemical, biodiversity, metagenome, and metaproteome analyses.
    RESULTS: Prominent active 0.2-3 µm free-living clades comprised Aurantivirga, \"Formosa\", Cd. Prosiliicoccus, NS4, NS5, Amylibacter, Planktomarina, SAR11 Ia, SAR92, and SAR86, whereas BD1-7, Stappiaceae, Nitrincolaceae, Methylophagaceae, Sulfitobacter, NS9, Polaribacter, Lentimonas, CL500-3, Algibacter, and Glaciecola dominated 3-10 µm and > 10 µm particles. Particle-attached bacteria were more diverse and exhibited more dynamic adaptive shifts over time in terms of taxonomic composition and repertoires of encoded polysaccharide-targeting enzymes. In total, 305 species-level metagenome-assembled genomes were obtained, including 152 particle-attached bacteria, 100 of which were novel for the sampling site with 76 representing new species. Compared to free-living bacteria, they featured on average larger metagenome-assembled genomes with higher proportions of polysaccharide utilization loci. The latter were predicted to target a broader spectrum of polysaccharide substrates, ranging from readily soluble, simple structured storage polysaccharides (e.g., laminarin, α-glucans) to less soluble, complex structural, or secreted polysaccharides (e.g., xylans, cellulose, pectins). In particular, the potential to target poorly soluble or complex polysaccharides was more widespread among abundant and active particle-attached bacteria.
    CONCLUSIONS: Particle-attached bacteria represented only 1% of all bloom-associated bacteria, yet our data suggest that many abundant active clades played a pivotal gatekeeping role in the solubilization and subsequent degradation of numerous important classes of algal glycans. The high diversity of polysaccharide niches among the most active particle-attached clades therefore is a determining factor for the proportion of algal polysaccharides that can be rapidly remineralized during generally short-lived phytoplankton bloom events. Video Abstract.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Video-Audio Media
    背景:海洋微藻的水华在全球碳循环中起着关键作用。这种水华需要浮游细菌的专门进化枝的连续水华,这些细菌在全球范围内共同再矿化千兆吨的藻类生物质。这种生物质主要由不同的多糖组成,因此,这些多糖的微生物分解是最重要的过程。
    结果:在2020年,我们在90天的时间内在德国湾采样了完整的双相春季开花。来自30个时间点的浮游细菌宏基因组允许重建251个宏基因组组装的基因组(MAG)。相应的转移瘤突出了最丰富的进化枝的50个特别活跃的MAG,包括许多多糖降解剂。糖测量以及细菌多糖利用基因座(PUL)表达数据将β-葡聚糖(硅藻素)和α-葡聚糖确定为最突出且代谢活跃的溶解多糖底物。两种底物在整个开花过程中都被消耗了,α-葡聚糖PUL表达在鞭毛虫高峰和细菌总细胞计数最低点之后不久的第二个开花阶段开始时达到峰值。
    结论:我们表明溶解的多糖的量和组成,特别是丰富的储存多糖,在浮游植物开花期间对丰富的浮游细菌成员的组成有明显的影响,其中一些竞争类似的多糖利基。我们假设除了释放藻类聚糖,由于细菌细胞死亡率增加,细菌聚糖的再循环也会对浮游植物开花期间的浮游细菌组成产生重大影响。视频摘要。
    Blooms of marine microalgae play a pivotal role in global carbon cycling. Such blooms entail successive blooms of specialized clades of planktonic bacteria that collectively remineralize gigatons of algal biomass on a global scale. This biomass is largely composed of distinct polysaccharides, and the microbial decomposition of these polysaccharides is therefore a process of prime importance.
    In 2020, we sampled a complete biphasic spring bloom in the German Bight over a 90-day period. Bacterioplankton metagenomes from 30 time points allowed reconstruction of 251 metagenome-assembled genomes (MAGs). Corresponding metatranscriptomes highlighted 50 particularly active MAGs of the most abundant clades, including many polysaccharide degraders. Saccharide measurements together with bacterial polysaccharide utilization loci (PUL) expression data identified β-glucans (diatom laminarin) and α-glucans as the most prominent and actively metabolized dissolved polysaccharide substrates. Both substrates were consumed throughout the bloom, with α-glucan PUL expression peaking at the beginning of the second bloom phase shortly after a peak in flagellate and the nadir in bacterial total cell counts.
    We show that the amounts and composition of dissolved polysaccharides, in particular abundant storage polysaccharides, have a pronounced influence on the composition of abundant bacterioplankton members during phytoplankton blooms, some of which compete for similar polysaccharide niches. We hypothesize that besides the release of algal glycans, also recycling of bacterial glycans as a result of increased bacterial cell mortality can have a significant influence on bacterioplankton composition during phytoplankton blooms. Video Abstract.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    海洋藻类物种包含大部分多糖,所述多糖显示出用于治疗和预防人类疾病的多功能性质和健康益处。Laminarin,或β-葡聚糖,一种来自褐藻的储存多糖,据报道具有潜在的药理特性,如抗氧化剂,抗肿瘤,抗凝剂,抗癌,免疫调节,抗肥胖,抗糖尿病,抗炎,伤口愈合,和神经保护潜力。它已被广泛研究作为生物医学应用的功能材料,因为它是可生物降解的,生物相容性是低毒物质。报道的临床前和临床研究表明,在生物医学和工业应用,如营养食品,作为天然替代药物的潜力,制药,功能性食品,药物开发/交付,和药妆。本文综述了海带多糖的生物活性,包括行动机制,对人类健康的影响,并报告了健康益处。此外,这篇综述还概述了最新进展,并确定了该领域进一步研究的差距和机会。它进一步强调了海带多糖在临床前和临床环境中的分子特征和生物活性,以预防疾病和作为潜在的治疗干预措施。
    Marine algal species comprise of a large portion of polysaccharides which have shown multifunctional properties and health benefits for treating and preventing human diseases. Laminarin, or β-glucan, a storage polysaccharide from brown algae, has been reported to have potential pharmacological properties such as antioxidant, anti-tumor, anti-coagulant, anticancer, immunomodulatory, anti-obesity, anti-diabetic, anti-inflammatory, wound healing, and neuroprotective potential. It has been widely investigated as a functional material in biomedical applications as it is biodegradable, biocompatible, and is low toxic substances. The reported preclinical and clinical studies demonstrate the potential of laminarin as natural alternative agents in biomedical and industrial applications such as nutraceuticals, pharmaceuticals, functional food, drug development/delivery, and cosmeceuticals. This review summarizes the biological activities of laminarin, including mechanisms of action, impacts on human health, and reported health benefits. Additionally, this review also provides an overview of recent advances and identifies gaps and opportunities for further research in this field. It further emphasizes the molecular characteristics and biological activities of laminarin in both preclinical and clinical settings for the prevention of the diseases and as potential therapeutic interventions.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    在这项研究中,从羊尾藻中分离出一种纯化的藻类多糖(P1),并研究了其结构特征和抗光老化活性。结果表明,P1的分子量为289kDa,主要由甘露糖醛酸组成,古洛糖醛酸和岩藻糖的摩尔比为7.67:2.35:1.00。P1的主链是→4)-β-ManA-(1→4)-α-GulA-(1→4)-β-ManA-(1→4)-β-ManA-(1→4)-α-GulA-(1→4)-β-ManA-(1→3,4)-β-ManA-(1→α-Fucp-(1→β-3-O此外,P1可抑制UVB照射的HaCaT细胞中MMPs(MMP-1、MMP-3、MMP-9)的表达,表明P1可以减少UVB照射引起的胶原损失。它还降低了ROS和炎症因子(TNF-α,IL-6和IL-1β),表明P1可以降低氧化应激和炎症反应。因此,羊尾藻多糖P1可以作为一种潜在的功能性食品来缓解皮肤光老化。
    In this study, a purified algal polysaccharide (P1) was isolated from Sargassum fusiforme and its structural characteristics and anti-photoaging activity were studied. Results showed that P1 had a molecular weight of 289 kDa and was mainly composed of mannuronic acid, guluronic acid and fucose with molar ratio of 7.67:2.35:1.00. The backbone of P1 was →4)-β-ManA-(1→4)-α-GulA-(1→4)-β-ManA-(1→4)-β-ManA-(1→4)-α-GulA-(1→4)-β-ManA-(1→3,4)-β-ManA-(1→ with a terminal group of α-Fucp-(1→ linked to O-3 position of →3,4)-β-ManA-(1→. In addition, P1 could inhibit the expressions of MMPs (MMP-1, MMP-3 and MMP-9) in the UVB-irradiated HaCaT cells, indicating that P1 could reduce collagen loss caused by UVB irradiation. It also reduced the contents of ROS and inflammatory factors (TNF-α, IL-6 and IL-1β), indicating that P1 could reduce the oxidative stress and inflammation response. Thus, Sargassum fusiforme polysaccharide P1 could be used as a potential functional food to relieve skin photoaging.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    Development of functional biological substitutes for skin tissue engineering applications has observed several advancements over the past few decades. In this regard, intelligent extracellular matrix (ECM) mimetic scaffolds have recently evolved as a promising paradigm by presenting instructive cues directing cell-matrix communication, tissue remodeling and homeostasis. However, orchestring multitude attributes of skin ECM yet presents an intriguing challenge to be addressed. In the present work, we have developed an in vitro skin scaffold by coating a bio-mimetic ECM cue κ-carrageenan on electrospun nanofibers for the first time. κ-Carrageenan, a natural sulfated algal polysaccharide exhibits close similarity with native glucosaminoglycans (GAGs) of skin ECM. On the other hand, electrospun nanofibers resemble the 3D nano-topographic architecture of ECM. In the coated form, κ-carrageenan could provide the biochemical cues necessary for cellular functions on the nanofibrous scaffold, thereby mimicking the native 3D microenvironment of skin ECM. The nano-architecture of the electrospun matrix is retained in the fabricated scaffold even after coating with κ-carrageenan. The developed biomimetic scaffold significantly supplements adhesion, growth, infiltration, survival and proliferation of fibroblasts. Furthermore, enhanced gene expression and excessive secretion of collagen proteins by fibroblasts communicate a conducive skin ECM micro-environment formation on the algal polysaccharide coated nanofibrous scaffold. Taken together, these findings present a simple yet effective strategy for the fabrication of ECM mimetic scaffold for promising skin tissue engineering applications.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

  • 文章类型: Journal Article
    Algal polysaccharide and oligosaccharide derivatives have been shown to possess a variety of therapeutic potentials and drug delivery applications. Algal polysaccharides contain sulfated sugar monomers derived from seaweed including brown, red, and green microalgae. Here, in this review, the recent progress of algal polysaccharides\' therapeutic applications as anticancer agents, as well as underlying cellular and molecular mechanisms was investigated. Moreover, recent progress in the structural chemistry of important polysaccharides with anticancer activities were illustrated.
    Electronic databases including \"Scopus\", \"PubMed\", and \"Cochrane library\" were searched using the keywords \"cancer\", or \"tumor\", or \"malignancy\" in title/abstract, along with \"algae\", or \"algal\" in the whole text until July 2018. Only English language papers were included.
    The most common polysaccharides involved in cancer management were sulfated polysaccharides, Fucoidans, Carageenans, and Ulvan from different species of algae that have been recognized in vitro and in vivo. The underlying anticancer mechanisms of algal polysaccharides included induction of apoptosis, cell cycle arrest, modulation of transduction signaling pathways, suppression of migration and angiogenesis, as well as activation of immune responses and antioxidant system. VEGF/VEGFR2, TGFR/Smad/Snail, TLR4/ROS/ER, CXCL12/ CXCR4, TGFR/Smad7/Smurf2, PI3K/AKT/mTOR, PBK/TOPK, and β-catenin/Wnt are among the main cellular signaling pathways which have a key role in the preventive and therapeutic effects of algal polysaccharides against oncogenesis.
    Algal polysaccharides play a crucial role in the management of cancer and may be considered the next frontier in pharmaceutical research. Further well-designed clinical trials are mandatory to evaluate the efficacy and safety of algal polysaccharides in patients with cancer.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    Sulfatases play a biologically important role by cleaving sulfate groups from molecules. They can be identified on the basis of signature sequences within their primary structures, and the largest family, S1, has predictable features that contribute specifically to the recognition and catalytic removal of sulfate groups. However, despite advances in the prediction and understanding of S1 sulfatases, a major question regards the molecular determinants that drive substrate recognition beyond the targeted sulfate group. Here, through analysis of an endo-4S-ι-carrageenan sulfatase (PsS1_19A) from Pseudoalteromonas sp. PS47, particularly X-ray crystal structures in complex with intact substrates, we show that specific recognition of the substrate leaving group components, in this case carbohydrate, provides the enzyme with specificity for its substrate. On the basis of these results we propose a catalytic subsite nomenclature that we anticipate will form a general foundation for understanding and describing the molecular basis of substrate recognition by sulfatases.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

公众号