Alanine racemase

丙氨酸消旋酶
  • 文章类型: Journal Article
    氨基酸的一个显著特征是它们的光学异构,以L型和D型存在。蛋白质仅由L型氨基酸组成。然而,最近,据报道,D-丙氨酸在感官评价方面的评价特别高。D-体氨基酸在乳酸菌的发酵过程中转化来自底物如食物的L-体氨基酸蛋白水解。本章介绍了通过NADH氧化还原系统使用D-氨基酸氧化酶和乳酸脱氢酶在乳酸菌(LAB)生产的溶液中进行D-丙氨酸消旋酶测定的方法。
    A notable characteristic of amino acids is their optical isomerism, existing as L-form and D-form. Proteins are composed exclusively of L-form amino acids. However, recently, it is reported that D-alanine is evaluated particularly highly in terms of sensory evaluation. D-body amino acids convert L-body amino acid proteolysis from a substrate such as foods during fermentation of lactic acid bacteria. This chapter presents a description of methods used for D-alanine racemase assays in the solution producing by lactic acid bacteria (LAB) using D-amino acid oxidase and lactic acid dehydrogenase via a NADH oxidoreduction system.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    化学抑制剂之间的协同相互作用,虽然信息丰富,很难解释,因为化学抑制剂通常可以有多个目标,其中许多可能是未知的。这里,使用多重转录抑制,我们已经验证了谷氨酸消旋酶和丙氨酸消旋酶的同时抑制在结核分枝杆菌中具有协同相互作用。这证实了化学相互作用研究的先前观察结果,并强调了靶向分枝杆菌细胞壁合成中涉及的多种酶的潜力。
    Synergistic interactions between chemical inhibitors, whilst informative, can be difficult to interpret, as chemical inhibitors can often have multiple targets, many of which can be unknown. Here, using multiplexed transcriptional repression, we have validated that the simultaneous repression of glutamate racemase and alanine racemase has a synergistic interaction in Mycobacterium tuberculosis. This confirms prior observations from chemical interaction studies and highlights the potential of targeting multiple enzymes involved in mycobacterial cell wall synthesis.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    在肠道沙门氏菌中,RidA脱氨酶的缺失导致反应性烯胺2-氨基丙烯酸酯(2AA)的积累。所产生的2AA胁迫通过使特定的靶吡哆醛5'-磷酸(PLP)依赖性酶失活而影响代谢并在某些条件下阻止生长。2AA应激的有害作用可以通过改变关键靶酶的敏感性或改变代谢网络中的一个或多个节点中的通量来克服。分解代谢L-丙氨酸消旋酶DadX是2AA的靶标,这解释了alrridA菌株无法使用L-丙氨酸作为唯一的氮源。抑制alrridA菌株生长缺陷的自发突变被鉴定为folE的病变,它编码GTP环水解酶,催化四氢叶酸(THF)合成的第一步。这里的数据显示,由folE病变引起的THF限制,或甲氧苄啶对二氢叶酸还原酶(FolA)的抑制作用,减少内源性丝氨酸产生的2AA。这些数据与苏氨酸水平的增加是一致的,由于叶酸水平低,降低2AA胁迫。IMPORTANCERidA是一种烯胺脱氨酶,其特征在于防止2-氨基丙烯酸酯(2AA)胁迫。在RidA缺席的情况下,2AA积累和破坏各种细胞酶。描述2AA胁迫系统的许多工作都依赖于外源添加丝氨酸来增加烯胺胁迫源的产生。本文的工作集中在理解内源性丝氨酸库产生的2AA应激的作用。因此,这项工作描述了微妙的压力水平的后果,尽管如此,至少在两个条件下损害了增长。描述改变2AA应激的生理后果的机制增加了我们对内源性代谢应激以及代谢网络的鲁棒性如何允许扰动被调节的理解。
    In Salmonella enterica, the absence of the RidA deaminase results in the accumulation of the reactive enamine 2-aminoacrylate (2AA). The resulting 2AA stress impacts metabolism and prevents growth in some conditions by inactivating a specific target pyridoxal 5\'-phosphate (PLP)-dependent enzyme(s). The detrimental effects of 2AA stress can be overcome by changing the sensitivity of a critical target enzyme or modifying flux in one or more nodes in the metabolic network. The catabolic L-alanine racemase DadX is a target of 2AA, which explains the inability of an alr ridA strain to use L-alanine as the sole nitrogen source. Spontaneous mutations that suppressed the growth defect of the alr ridA strain were identified as lesions in folE, which encodes GTP cyclohydrolase and catalyzes the first step of tetrahydrofolate (THF) synthesis. The data here show that THF limitation resulting from a folE lesion, or inhibition of dihydrofolate reductase (FolA) by trimethoprim, decreases the 2AA generated from endogenous serine. The data are consistent with an increased level of threonine, resulting from low folate levels, decreasing 2AA stress.IMPORTANCERidA is an enamine deaminase that has been characterized as preventing the 2-aminoacrylate (2AA) stress. In the absence of RidA, 2AA accumulates and damages various cellular enzymes. Much of the work describing the 2AA stress system has depended on the exogenous addition of serine to increase the production of the enamine stressor. The work herein focuses on understanding the effect of 2AA stress generated from endogenous serine pools. As such, this work describes the consequences of a subtle level of stress that nonetheless compromises growth in at least two conditions. Describing mechanisms that alter the physiological consequences of 2AA stress increases our understanding of endogenous metabolic stress and how the robustness of the metabolic network allows perturbations to be modulated.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    虽然细菌肽聚糖(PG)是高度保守的,PG生物合成和结构的一些自然变化已经进化。了解这种变异的机制和限制将有助于我们对抗生素耐药性的理解。先天免疫,和细菌的进化。我们通过阻断费氏弧菌中PG生物合成的必要步骤,然后选择具有恢复的原养型的突变体,探索了对PG进化的限制。这里,我们尝试选择D-谷氨酸营养缺陷型murIracD突变体的原养型抑制因子。在未补充的溶源肉汤盐(LBS)上没有分离出抑制剂,尽管电镀>1011个细胞,通过甲磺酸乙酯的诱变也没有产生任何抑制剂。在补充有iso-D-gln的LBS上分离出单个抑制器,尽管iso-D-gln随后显得无关紧要。这种抑制剂具有通过创建新的连接而形成的基因组扩增,该连接将proB融合到编码推定的广谱外消旋酶的基因。fischeri,bsrF.缺乏推定分泌信号的工程化bsrF等位基因(ΔSS-bsrF)也抑制了D-glu营养缺陷型,导致PG与野生型无法区分。ΔSS-bsrF等位基因类似地抑制了alr突变体的D-丙氨酸营养缺陷型,并将原养型恢复为D-ala和D-glu的murIalr双突变体营养缺陷型。ΔSS-bsrF等位基因增加了对D-环丝氨酸的抗性,但对PG靶向抗生素青霉素的敏感性没有影响,氨苄青霉素,或者万古霉素.我们的工作有助于定义对PG进化的约束,并揭示了费氏弧菌中的周质广谱消旋酶,可以用于PG生物合成,伴随D-环丝氨酸抗性。重要氨基酸是由生物在生命的所有领域中使用和产生的,但通常,他们的起源和角色没有得到很好的理解。在细菌中,D-ala和D-glu是典型肽聚糖细胞壁的结构成分,由专用的消旋酶Alr和MurI产生,分别。其他细菌消旋酶的最新发现正在拓宽我们的视野并加深我们对D-氨基酸代谢的理解。这里,在探索费氏弧菌的其他PG生物合成途径时,我们意外地发现了一种不寻常的消旋酶,BsrF.我们的结果说明了抗生素耐药性演变的新机制,并为探索非规范消旋酶和D-氨基酸在细菌中的作用提供了新的途径。
    Although bacterial peptidoglycan (PG) is highly conserved, some natural variations in PG biosynthesis and structure have evolved. Understanding the mechanisms and limits of such variation will inform our understanding of antibiotic resistance, innate immunity, and the evolution of bacteria. We have explored the constraints on PG evolution by blocking essential steps in PG biosynthesis in Vibrio fischeri and then selecting mutants with restored prototrophy. Here, we attempted to select prototrophic suppressors of a D-glutamate auxotrophic murI racD mutant. No suppressors were isolated on unsupplemented lysogeny broth salts (LBS), despite plating >1011 cells, nor were any suppressors generated through mutagenesis with ethyl methanesulfonate. A single suppressor was isolated on LBS supplemented with iso-D-gln, although the iso-D-gln subsequently appeared irrelevant. This suppressor has a genomic amplification formed by the creation of a novel junction that fuses proB to a gene encoding a putative broad-spectrum racemase of V. fischeri, bsrF. An engineered bsrF allele lacking the putative secretion signal (ΔSS-bsrF) also suppressed D-glu auxotrophy, resulting in PG that was indistinguishable from the wild type. The ΔSS-bsrF allele similarly suppressed the D-alanine auxotrophy of an alr mutant and restored prototrophy to a murI alr double mutant auxotrophic for both D-ala and D-glu. The ΔSS-bsrF allele increased resistance to D-cycloserine but had no effect on sensitivity to PG-targeting antibiotics penicillin, ampicillin, or vancomycin. Our work helps define constraints on PG evolution and reveals a periplasmic broad-spectrum racemase in V. fischeri that can be co-opted for PG biosynthesis, with concomitant D-cycloserine resistance.
    D-Amino acids are used and produced by organisms across all domains of life, but often, their origins and roles are not well understood. In bacteria, D-ala and D-glu are structural components of the canonical peptidoglycan cell wall and are generated by dedicated racemases Alr and MurI, respectively. The more recent discovery of additional bacterial racemases is broadening our view and deepening our understanding of D-amino acid metabolism. Here, while exploring alternative PG biosynthetic pathways in Vibrio fischeri, we unexpectedly shed light on an unusual racemase, BsrF. Our results illustrate a novel mechanism for the evolution of antibiotic resistance and provide a new avenue for exploring the roles of non-canonical racemases and D-amino acids in bacteria.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Preprint
    弱有机酸通常存在于细菌定植的宿主壁ni中,随着环境变得酸性,它们可以抑制细菌的生长。这种抑制作用通常归因于细胞溶质中高浓度有机阴离子的积累所产生的毒性。破坏细胞内稳态.然而,有机阴离子毒害的精确细胞靶标和用于对抗细菌中有机阴离子中毒的机制尚未阐明。这里,我们利用乙酸,一种在肠道中大量发现的弱有机酸,用于研究其对金黄色葡萄球菌生长的影响。我们证明乙酸根阴离子结合并抑制金黄色葡萄球菌中的D-丙氨酰-D-丙氨酸连接酶(Ddl)活性。Ddl抑制降低细胞内D-丙氨酰-D-丙氨酸(D-Ala-D-Ala)水平,损害葡萄球菌肽聚糖交联和细胞壁完整性。为了克服乙酸盐介导的Ddl抑制作用,金黄色葡萄球菌通过丙氨酸消旋酶(Alrl)活性维持高的细胞内D-Ala库,并且另外通过控制D-丙氨酸氨基转移酶(Dat)活性来限制D-Ala向D-谷氨酸的通量。令人惊讶的是,金黄色葡萄球菌中乙酸盐中毒的操作方式对于多种生物学相关的弱有机酸是共同的,表明Ddl是小有机阴离子的保守靶标.这些发现表明,金黄色葡萄球菌可能已经进化到维持高的细胞内D-Ala浓度,部分是为了对抗有机阴离子中毒。
    在弱酸性条件下,弱有机酸如乙酸作为有机阴离子在胞质溶胶内积累到高浓度。然而,有机阴离子积累的生理后果定义不清。在这里,我们研究乙酸阴离子如何影响金黄色葡萄球菌。我们表明乙酸根阴离子直接结合Ddl并抑制其活性。所产生的细胞内D-Ala-D-Ala库的减少影响肽聚糖完整性。由于乙酸盐是Ddl的弱抑制剂,维持高细胞内D-Ala池的机制足以对抗金黄色葡萄球菌中乙酸介导的Ddl抑制作用。
    Weak organic acids are commonly found in host niches colonized by bacteria, and they can inhibit bacterial growth as the environment becomes acidic. This inhibition is often attributed to the toxicity resulting from the accumulation of high concentrations of organic anions in the cytosol, which disrupts cellular homeostasis. However, the precise cellular targets that organic anions poison and the mechanisms used to counter organic anion intoxication in bacteria have not been elucidated. Here, we utilize acetic acid, a weak organic acid abundantly found in the gut to investigate its impact on the growth of Staphylococcus aureus. We demonstrate that acetate anions bind to and inhibit d-alanyl-d-alanine ligase (Ddl) activity in S. aureus. Ddl inhibition reduces intracellular d-alanyl-d-alanine (d-Ala-d-Ala) levels, compromising staphylococcal peptidoglycan cross-linking and cell wall integrity. To overcome the effects of acetate-mediated Ddl inhibition, S. aureus maintains a high intracellular d-Ala pool through alanine racemase (Alr1) activity and additionally limits the flux of d-Ala to d-glutamate by controlling d-alanine aminotransferase (Dat) activity. Surprisingly, the modus operandi of acetate intoxication in S. aureus is common to multiple biologically relevant weak organic acids indicating that Ddl is a conserved target of small organic anions. These findings suggest that S. aureus may have evolved to maintain high intracellular d-Ala concentrations, partly to counter organic anion intoxication.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    布鲁氏菌,人畜共患兼性细胞内致病菌,对人类健康和畜牧业的发展都构成了重大威胁。丙氨酸消旋酶(Alr),负责丙氨酸外消旋的酶,在这种细菌的毒力调节中起着关键作用。此外,具有alr基因缺失(Δalr)的布鲁氏菌突变体具有作为疫苗候选物的潜力。然而,Alr基因敲除对布鲁氏菌致病性有害影响的机制仍然难以捉摸。这里,最初,我们对Alr进行了生物信息学分析,这证明了布鲁氏菌属物种中蛋白质的高度保守性。随后的代谢组学研究揭示了alr基因缺失后氨基酸途径的改变。此外,猪布鲁氏菌S2中的alr缺失导致对胁迫的抵抗力降低,抗生素,和其他因素。模拟巨噬细胞细胞内感染的透射电子显微镜显示Δalr菌株的细胞壁受损,而碘化丙啶染色和碱性磷酸酶和乳酸脱氢酶测定显示细胞膜通透性改变。通过测量细胞表面疏水性和ζ电位来揭示细胞壁性质的变化。最后,免疫荧光和细菌计数测定显示Δalr菌株的粘附能力降低。总之,我们的发现表明,调节布鲁氏菌氨基酸代谢的alr基因影响细胞壁的性质,调节细菌粘附能力。这项研究首次证明Alr通过调节细菌代谢来影响毒力,从而为布鲁氏菌的致病机制提供了新的见解。
    Brucella, a zoonotic facultative intracellular pathogenic bacterium, poses a significant threat both to human health and to the development of the livestock industry. Alanine racemase (Alr), the enzyme responsible for alanine racemization, plays a pivotal role in regulating virulence in this bacterium. Moreover, Brucella mutants with alr gene deletions (Δalr) exhibit potential as vaccine candidates. However, the mechanisms that underlie the detrimental effects of alr knockouts on Brucella pathogenicity remain elusive. Here, initially, we conducted a bioinformatics analysis of Alr, which demonstrated a high degree of conservation of the protein within Brucella spp. Subsequent metabolomics studies unveiled alterations in amino acid pathways following deletion of the alr gene. Furthermore, alr deletion in Brucella suis S2 induced decreased resistance to stress, antibiotics, and other factors. Transmission electron microscopy of simulated macrophage intracellular infection revealed damage to the cell wall in the Δalr strain, whereas propidium iodide staining and alkaline phosphatase and lactate dehydrogenase assays demonstrated alterations in cell membrane permeability. Changes in cell wall properties were revealed by measurements of cell surface hydrophobicity and zeta potential. Finally, the diminished adhesion capacity of the Δalr strain was shown by immunofluorescence and bacterial enumeration assays. In summary, our findings indicate that the alr gene that regulates amino acid metabolism in Brucella influences the properties of the cell wall, which modulates bacterial adherence capability. This study is the first demonstration that Alr impacts virulence by modulating bacterial metabolism, thereby providing novel insights into the pathogenic mechanisms of Brucella spp.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    食品生产中的一些d-氨基酸功能是众所周知的:d-丙氨酸改善了清酒的感官评价,啤酒,和发酵食品。因此,对于d-氨基酸的应用,酸乳杆菌ZH-2中的丙氨酸消旋酶(ALRase),采用分子生物学方法进行分析。有人假设ALRase编码DNA,alr,在ZH-2菌株中不同于其他的生科乳杆菌菌株。然而,国家生物技术中心(NCBI)的完整基因组测序显示ZH-2菌株中alr的氨基酸序列与sakei乳杆菌23K菌株中alr的同源性为99.4%。然而,据认为,alr的序列是乳酸菌群中独特的氨基酸序列。ZH-2菌株的DNA“alr”具有1140bp的DNA碱基,分子量为41kDa。使用SDS-PAGE推断其分子量为约38.0kDa。其最佳条件是在30-40°C的pH9.0,在pH9.0-10.0和4-40°C下显示稳定性其辅因子是磷酸吡哆醛。与缺乏金属离子相比,铜和锌离子更多地激活了其活性。此外,其Km为1.32×10-3(mol),Vmax为4.27×10-5(μmol-1min-1)。ALRase在其他底物如氨基酸中与丙氨酸反应最强烈。发现针对丝氨酸的酶对丙氨酸具有40%的活性。该酶从1-丙氨酸ZH-2菌株中转化高达54.5%的d-丙氨酸。
    Some d-amino acid functions for food production are widely known: d-alanine improves sensory evaluations of sake, beer, and fermented foods. Therefore, for the application of d-amino acids, alanine racemase (ALRase) in Lactobacillus sakei ZH-2, which has strong racemization, was analyzed using molecular biological methods. It had been hypothesized that ALRase coding DNA, alr, in ZH-2 strain differs from those of other Lactobacillus sakei strains. However, complete genome sequencing by the National Center for Biotechnology (NCBI) revealed the amino acid sequence of alr in ZH-2 strain to have homology of 99.4% similarity with the alr in Lactobacillus sakei 23K strain. However, it is considered that the sequence of alr was a unique amino acid sequence in the lactic acid bacteria group. DNA \"alr\" of ZH-2 strain has a 1140 bp DNA base with 41 kDa molecular mass. Its molecular mass was inferred as approximately 38.0 kDa using SDS-PAGE. Its optimum conditions are pH 9.0 at 30-40°C, showing stability at pH 9.0-10.0 and 4-40°C. Its cofactor is pyridoxal phosphate. Its activity is activated more by copper and zinc ions than by the lack of a metal ion. Additionally, its K m is 1.32 × 10-3 (mol), with V max of 4.27 × 10-5 (μmol-1 min-1). ALRase reacted against alanine most strongly in other substrates such as amino acids. The enzyme against serine was found to have 40% activity against alanine. The enzyme converted up to 54.5% of d-alanine from l-alanine ZH-2 strain.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    猪布鲁氏菌,布鲁氏菌病的病原体,对公共卫生和畜牧业构成重大威胁。然而,丙氨酸消旋酶(alr)基因的作用,在布鲁氏菌中编码丙氨酸消旋酶,尚不清楚。这里,我们分析了猪布鲁氏菌S2的alr缺失突变体和互补菌株。敲除菌株显示出不变的,在吖啶黄素凝集试验中的平滑表型,但缺乏脂多糖(LPS)的核心多糖部分。在缺失突变体中,参与LPS合成的基因显着上调。alr缺失菌株在巨噬细胞中表现出降低的细胞内活力,增加巨噬细胞介导的杀伤,和细胞凋亡标志物的上调。Bcl2,一种抗凋亡蛋白,被下调,而促凋亡蛋白,Bax,Caspase-9和Caspase-3在用缺失菌株感染的巨噬细胞中上调。感染的巨噬细胞显示线粒体膜通透性增加,细胞色素C释放,和活性氧,激活线粒体凋亡途径。这些发现表明丙氨酸消旋酶在猪链球菌S2中是可有可无的,但影响了菌株的粗糙特征,并在巨噬细胞侵袭期间触发了线粒体凋亡途径。alr基因的缺失降低了细胞内的存活和毒力。这项研究增强了我们对布鲁氏菌生存和毒力的分子机制的理解,具体来说,alr基因如何通过调节细菌LPS的生物合成来影响宿主的免疫逃避。
    Brucella suis, the causative agent of brucellosis, poses a significant public health and animal husbandry threat. However, the role of the alanine racemase (alr) gene, which encodes alanine racemase in Brucella, remains unclear. Here, we analyzed an alr deletion mutant and a complemented strain of Brucella suis S2. The knockout strain displayed an unaltered, smooth phenotype in acriflavine agglutination tests but lacked the core polysaccharide portion of lipopolysaccharide (LPS). Genes involved in the LPS synthesis were significantly upregulated in the deletion mutant. The alr deletion strain exhibited reduced intracellular viability in the macrophages, increased macrophage-mediated killing, and upregulation of the apoptosis markers. Bcl2, an anti-apoptotic protein, was downregulated, while the pro-apoptotic proteins, Bax, Caspase-9, and Caspase-3, were upregulated in the macrophages infected with the deletion strain. The infected macrophages showed increased mitochondrial membrane permeability, Cytochrome C release, and reactive oxygen species, activating the mitochondrial apoptosis pathway. These findings revealed that alanine racemase was dispensable in B. suis S2 but influenced the strain\'s rough features and triggered the mitochondrial apoptosis pathway during macrophage invasion. The deletion of the alr gene reduced the intracellular survival and virulence. This study enhances our understanding of the molecular mechanism underlying Brucella\'s survival and virulence and, specifically, how alr gene affects host immune evasion by regulating bacterial LPS biosynthesis.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    根除幽门螺杆菌,一类致癌物,面临几个障碍,这需要传统药物开发方法的替代选择。丙氨酸消旋酶(Alr)被提议作为H.pylori的药物靶点,受丙酸(PA)抑制,在之前的计算机模拟研究中。我们研究了通过Alr抑制治疗幽门螺杆菌感染的可能方法。建立了幽门螺杆菌Alr的新模型,已验证,PA与活性位点的结合通过分子对接进行建模,具有良好的对接评分。针对幽门螺杆菌ATCC43504和6种幽门螺杆菌临床分离株的PA最小抑制浓度(MIC)在312.5至416.7±180μg/ml之间,并且在增加PA浓度的14次连续传代后保持不变。PA的最低杀菌浓度为625μg/ml。选择性Alr抑制通过随着D-丙氨酸浓度增加而显著的PAMIC增加来证实。在其他测试的病原体中记录类似的PAMIC(312.5至625μg/ml)。PA在测试细胞系中缺乏细胞毒性,并在大鼠感染模型中有效根除幽门螺杆菌。总之,Alr是一个很有前途的广谱药物靶点,通过重复暴露14个连续传代,被PA抑制而没有抗性发展。
    Eradication of Helicobacter pylori, the class 1 carcinogen, faces several obstacles, which demand alternative options to conventional drug development methods. Alanine racemase (Alr) was proposed as H. pylori drug target, inhibited by propanoic acid (PA), in a previous in silico study. We investigated the possible treatment of H. pylori infection through Alr inhibition. A new model of H. pylori Alr was built, validated, and the binding of PA to the active site was modelled via molecular docking with a good docking score. PA minimum inhibitory concentration (MIC) against H. pylori ATCC 43504 and six H. pylori clinical isolates ranged from 312.5 to 416.7 ± 180 μg/ml and remained unchanged after 14 serial passages in increasing PA concentrations. The minimum bactericidal concentration of PA was 625 μg/ml. Selective Alr inhibition was confirmed by a significant PA MIC increase with increasing d-alanine concentrations. Similar PA MIC in other tested pathogens was recorded (312.5-625 μg/ml). PA lacked cytotoxicity in tested cell lines and efficiently eradicated H. pylori in a rat infection model. In conclusion, Alr is a promising broad-spectrum drug target, inhibited by PA without resistance development by repeated exposure for 14 serial passages.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    鉴于一直存在的抗菌耐药性威胁,迫切需要确定新的抗菌药物和靶标。一个这样的靶标是丙氨酸消旋酶(Alr),细菌细胞壁生物合成所需的酶。Alr是一种有吸引力的药物靶标,因为它对细菌生存至关重要,但在人类中却不存在。现有的靶向Alr的药物缺乏特异性并且具有严重的副作用。我们在这里研究Alr抑制的替代机制。Alr仅作为专性同型二聚体发挥作用,所以我们研究了二聚体界面上的七个保守相互作用,远离酶活性位点,确定对活动可能的变构影响。以结核分枝杆菌(MT)的Alr为模型,我们发现Lys261/Asp135盐桥对催化活性至关重要。Lys261Ala突变使酶完全失活,Asp135Ala突变使催化活性降低8倍。进一步的研究表明,Lys261/Asp135盐桥附近有一个潜在的药物结合位点,可能对变构药物的发现很有用。
    Given the ever-present threat of antibacterial resistance, there is an urgent need to identify new antibacterial drugs and targets. One such target is alanine racemase (Alr), an enzyme required for bacterial cell-wall biosynthesis. Alr is an attractive drug target because it is essential for bacterial survival but is absent in humans. Existing drugs targeting Alr lack specificity and have severe side effects. We here investigate alternative mechanisms of Alr inhibition. Alr functions exclusively as an obligate homodimer, so we probed seven conserved interactions on the dimer interface, distant from the enzymatic active site, to identify possible allosteric influences on activity. Using the Alr from Mycobacterium tuberculosis (MT) as a model, we found that the Lys261/Asp135 salt bridge is critical for catalytic activity. The Lys261Ala mutation completely inactivated the enzyme, and the Asp135Ala mutation reduced catalytic activity eight-fold. Further investigation suggested a potential drug-binding site near the Lys261/Asp135 salt bridge that may be useful for allosteric drug discovery.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

公众号