Al tolerance

Al 公差
  • 文章类型: Journal Article
    在酸性土壤中,铝(Al)毒性抑制植物根系的生长和发育,影响养分和水分的吸收,导致产量和质量下降。因此,研究和鉴定铝耐受的候选基因,阐明其在铝胁迫下的生理和分子机制至关重要。在这项研究中,我们发现了一个调节耐铝的新基因OsAlR3,并从生理上分析了其机制,转录和代谢水平。与WT相比,丙二醛(MDA)和过氧化氢(H2O2)含量显著升高,当暴露于Al胁迫时,osalr3突变系的超氧化物歧化酶(SOD)活性和柠檬酸(CA)含量显着降低。在Al应力下,与WT相比,osalr3表现出抗氧化相关基因的表达减少,有机酸含量降低。综合转录组和代谢组分析显示,苯丙素生物合成途径在OsAlR3介导的Al耐受中起重要作用。外源CA和草酸(OA)可以增加Al胁迫下突变体的总根长度并增强其抗氧化能力。最后,我们发现了一个新的基因OsAlR3,它通过分泌有机酸来促进铝离子的螯合,从而正向调节铝的耐受性,增加抗氧化基因的表达。
    In acidic soils, aluminum (Al) toxicity inhibits the growth and development of plant roots and affects nutrient and water absorption, leading to reduced yield and quality. Therefore, it is crucial to investigate and identify candidate genes for Al tolerance and elucidate their physiological and molecular mechanisms under Al stress. In this study, we identified a new gene OsAlR3 regulating Al tolerance, and analyzed its mechanism from physiological, transcriptional and metabolic levels. Compared with the WT, malondialdehyde (MDA) and hydrogen peroxide (H2O2) content were significantly increased, superoxide dismutase (SOD) activity and citric acid (CA) content were significantly decreased in the osalr3 mutant lines when exposed to Al stress. Under Al stress, the osalr3 exhibited decreased expression of antioxidant-related genes and lower organic acid content compared with WT. Integrated transcriptome and metabolome analysis showed the phenylpropanoid biosynthetic pathway plays an important role in OsAlR3-mediated Al tolerance. Exogenous CA and oxalic acid (OA) could increase total root length and enhance the antioxidant capacity in the mutant lines under Al stress. Conclusively, we found a new gene OsAlR3 that positively regulates Al tolerance by promoting the chelation of Al ions through the secretion of organic acids, and increasing the expression of antioxidant genes.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    铝(Al)毒性是影响作物生长的环境胁迫因子之一,发展,和生产力。MYB转录因子在响应生物或非生物胁迫中起着至关重要的作用。然而,MYB转录因子在铝耐受中的作用尚未明确阐明。这里,我们发现GmMYB183,一个编码R2R3MYB转录因子的基因,涉及铝耐受性。亚细胞定位研究表明,GmMYB183蛋白位于细胞核,细胞质和细胞膜。与野生型相比,GmMYB183在拟南芥和大豆毛状根中的过表达增强了植物对Al胁迫的耐受性,具有较高的柠檬酸盐分泌和较少的铝积累。此外,我们发现GmMYB183与GmMATE75基因启动子结合,该启动子编码质膜定位的柠檬酸盐转运蛋白.通过双荧光素酶报告系统和酵母一个杂种,显示GmMYB183蛋白直接激活GmMATE75的转录。此外,GmMATE75的表达可能取决于GmMYB183中Ser36残基的磷酸化和GmMATE75启动子P3片段中的两个MYB位点。总之,GmMYB183通过促进柠檬酸盐的分泌赋予铝耐受性,为进一步阐明植物抗铝机理提供了科学依据。
    Aluminum (Al) toxicity is one of the environmental stress factors that affects crop growth, development, and productivity. MYB transcription factors play crucial roles in responding to biotic or abiotic stresses. However, the roles of MYB transcription factors in Al tolerance have not been clearly elucidated. Here, we found that GmMYB183, a gene encoding a R2R3 MYB transcription factor, is involved in Al tolerance. Subcellular localization studies revealed that GmMYB183 protein is located in the nucleus, cytoplasm and cell membrane. Overexpression of GmMYB183 in Arabidopsis and soybean hairy roots enhanced plant tolerance towards Al stress compared to the wild type, with higher citrate secretion and less Al accumulation. Furthermore, we showed that GmMYB183 binds the GmMATE75 gene promoter encoding for a plasma-membrane-localized citrate transporter. Through a dual-luciferase reporter system and yeast one hybrid, the GmMYB183 protein was shown to directly activate the transcription of GmMATE75. Furthermore, the expression of GmMATE75 may depend on phosphorylation of Ser36 residues in GmMYB183 and two MYB sites in P3 segment of the GmMATE75 promoter. In conclusion, GmMYB183 conferred Al tolerance by promoting the secretion of citrate, which provides a scientific basis for further elucidating the mechanism of plant Al resistance.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    水稻(Oryzasativa)表现出极大的铝(Al)耐性。C2H2转录因子(TF)ART1通过调节特定基因表达来关键调节水稻Al耐受性。然而,对转录后ART1调控知之甚少。这里,我们通过酵母双杂交(Y2H)测定鉴定了ART1相互作用的基因OsNAC016。OsNAC016主要在根中表达,并被Al弱诱导。免疫染色显示OsNAC016是一种核蛋白,定位于所有根细胞中。OsNAC016的敲除没有改变Al敏感性。OsNAC016的过表达导致根内Al聚集减少,并增强了水稻的耐铝性。基于转录组学和qRT-PCR评估,某些细胞壁相关或ART调控的基因表达,如OsMYB30和OsFRDL4在过表达OsNAC016的植物中发生了改变。这些结果表明,OsNAC016与ART1相互作用,共同调控一些耐铝基因,是水稻耐铝的关键调控因子。
    Rice (Oryza sativa) exhibits tremendous aluminum (Al)-tolerance. The C2H2-transcription factor (TF) ART1 critically regulates rice Al tolerance via modulation of specific gene expression. However, little is known about the posttranscriptional ART1 regulation. Here, we identified an ART1-interacted gene OsNAC016 via a yeast two-hybrid (Y2H) assay. OsNAC016 was primarily expressed in roots and weakly induced by Al. Immunostaining showed that OsNAC016 was a nuclear protein and localized in all root cells. Knockout of OsNAC016 did not alter Al sensitivity. Overexpression of OsNAC016 resulted in less Al aggregation within roots and enhanced Al tolerance in rice. Based on transcriptomic and qRT-PCR evaluations, certain cell-wall-related or ART-regulated gene expressions such as OsMYB30 and OsFRDL4 were altered in OsNAC016-overexpressing plants. These results indicated that OsNAC016 interacts with ART1 to cooperatively regulate some Al-tolerance genes and is a critical regulatory factor in rice Al tolerance.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    铝(Al)中毒被认为是限制酸性土壤中作物生产力的主要因素。许多研究表明,长链非编码RNA(lncRNA)在植物生长和对不同非生物胁迫的反应中起着至关重要的作用。然而,在橄榄树中,仍然缺乏在全基因组水平上对Al胁迫响应的lncRNAs的鉴定和表征。这里,我们对中兰(耐铝基因型)和Frantoioselezione(铝敏感)响应铝暴露的lncRNA转录组进行了比较分析。从两种基因型中总共鉴定出19,498个新的lncRNAs,6900个lncRNA-靶对被鉴定为顺式作用,2311个被认为是反式作用。其中,2076个lncRNA被评价为与Al耐受相关的lncRNA,因为它们在Al暴露下具有明显的基因型特异性表达谱。靶标预测和功能分析揭示了几个关键的lncRNAs与编码果胶酯酶的基因有关。木葡聚糖内葡萄糖基转移酶/水解酶,WRKY和MYB转录因子,其主要参与对Al耐性的细胞壁修饰。此外,基因共表达网络分析显示8个lncRNA-mRNA-miRNA模块参与下游抗Al基因的转录调控。我们的发现增加了我们对lncRNAs在橄榄中响应Al胁迫的功能的理解,并确定了潜在的有希望的lncRNAs用于进一步研究。
    Aluminum (Al) toxcity is considered to be the primary factor limiting crop productivity in acidic soil. Many studies indicate that long non-coding RNAs (lncRNAs) fulfil a crucial role in plant growth and responses to different abiotic stress. However, identification and characterization of lncRNAs responsive to Al stress at a genome-wide level in olive tree is still lacking. Here, we performed comparative analysis on lncRNA transcriptome between Zhonglan (an Al-tolerant genotype) and Frantoio selezione (Al-sensitive) responding to Al exposure. A total of 19,498 novel lncRNAs were identified from both genotypes, and 6900 lncRNA-target pairs were identified as cis-acting and 2311 supposed to be trans-acting. Among them, 2076 lncRNAs were appraised as Al tolerance-associated lncRNAs due to their distinctly genotype-specific expression profiles under Al exposure. Target prediction and functional analyses revealed several key lncRNAs are related to genes encoding pectinesterases, xyloglucan endotransglucosylase/hydrolase, WRKY and MYB transcription factors, which mainly participate in the modification of cell wall for Al tolerance. Furthermore, gene co-expression network analysis showed 8 lncRNA-mRNA-miRNA modules participate in transcriptional regulation of downstream Al resistant genes. Our findings increased our understanding about the function of lncRNAs in responding to Al stress in olive and identified potential promising lncRNAs for further investigation.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    铝(Al)毒性是酸性土壤上小麦生产力和品质的主要威胁。鉴定新的Al耐受性基因对于育种者金字塔不同的耐受性机制至关重要,从而导致更大的Al耐受性。我们旨在鉴定与小麦耐铝性相关的新数量性状基因座(QTL)和关键候选基因。在这里,我们使用酸性土壤测定法研究了334个小麦品种耐铝性的基因型变异。进行了全基因组关联研究(GWAS)和转录组研究以鉴定Al耐受性的关键基因。GWAS确定了几个与酸性土壤耐受性相关的QTL,包括1A染色体上的一个主要QTL,除了TaALMT1所在的4D上的QTL。新鉴定的QTL周围的四个重要标记解释了27.2%的表型变异。由于存在TaALMT1的报道标记,超过97%的基因型对Al具有耐受性。对于那些在1A上存在新QTL但没有TaALMT1的基因型,超过90%的基因型对Al表现出中等或高耐受性,证实染色体1A上存在Al耐受性基因。通过结合GWAS和RNA-seq分析,我们确定了11个与铝耐受性相关的候选基因。该结果为小麦耐铝性的遗传基础提供了新的见解。鉴定的基因可用于耐铝种质的育种。
    Aluminum (Al) toxicity is a major threat to the productivity and quality of wheat on acid soil. Identifying novel Al tolerance genes is crucial for breeders to pyramid different tolerance mechanisms thus leading to greater Al tolerance. We aim to identify novel quantitative trait loci (QTL) and key candidate genes associated with Al tolerance in wheat. Herein, we investigated the genotypic variation in Al tolerance among 334 wheat varieties using an acid soil assay. Genome-wide association study (GWAS) and transcriptome were carried out to identify key genes for Al tolerance. GWAS identified several QTL associated with acid soil tolerance including one major QTL on chromosome 1A, in addition to the QTL on 4D where TaALMT1 is located. The four significant markers around the newly identified QTL explained 27.2% of the phenotypic variation. With the existence of reported markers for TaALMT1, more than 97% of the genotypes showed tolerance to Al. For those genotypes with the existence of the novel QTL on 1A but without TaALMT1, more than 90% of genotypes showed medium or high tolerance to Al, confirming the existence of the Al tolerance gene(s) on chromosome 1A. By combining GWAS and RNA-seq analysis, we identified 11 candidate genes associated with Al tolerance. The results provide new insights into the genetic basis of Al tolerance in wheat. The identified genes can be used for the breeding of Al tolerant accessions.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    铜毛虫,芒草中的一种根内生菌,通过改变铝(Al)的定位和铁载体的产生来增强中华分枝杆菌的耐铝性,oosporein,螯合铝解毒。Oosporein具有多种功能,包括杀虫活性,植物毒性,抗真菌活性,和铁载体。在我们的研究中,我们重点研究了卵孢子菌素作为铁载体的解毒作用以及在铝暴露下对中华分枝杆菌的生长。此外,与作为对照植物的Lactucasativa和Oryzasativa进行比较,证实了卵孢子素对中华分枝杆菌的植物毒性。在Al应力下,Oospocrein在10ppm时促进了M.sinensis幼苗中的植物生长,其浓度与我们先前研究中感染铜的中华分枝杆菌中检测到的浓度相同。即使在高浓度的卵细胞孢子蛋白下,与苜蓿相比,卵细胞孢子蛋白对中华分枝杆菌的植物毒性也很低。这些结果表明,在铝胁迫下,中华分枝杆菌根部的卵孢子素浓度将保持在适当的浓度以解毒铝,并促进中华分枝杆菌的生长。尽管卵孢子蛋白对天然寄主植物的植物毒性较低,M.sinensis,与非寄主植物相比,L.sativa.
    Chaetomium cupreum, a root endophyte in Miscanthus sinensis, enhances Al tolerance in M. sinensis by changing aluminum (Al) localization and the production of a siderophore, oosporein, which chelates Al for detoxification. Oosporein has various functions, including insecticidal activity, phytotoxicity, antifungal activity, and a siderophore. In our study, we focused on the detoxification effect of oosporein as a siderophore and on the growth of M. sinensis under Al exposure. In addition, the phytotoxicity of oosporein to M. sinensis was confirmed to compare with those in Lactuca sativa and Oryza sativa as control plants. Under Al stress, oosporein promoted plant growth in M. sinensis seedlings at 10 ppm, which was the same concentration as that detected in M. sinensis roots infected with C. cupreum in our previous study. Oosporein also showed low phytotoxicity to M. sinensis compared with L. sativa at even high concentrations of oosporein. These results suggest that the concentration of oosporein in M. sinensis roots would be maintained at the appropriate concentration to detoxify Al and would promote M. sinensis growth under Al stress, although oosporein would show low phytotoxicity to the natural host plant, M. sinensis, compared with the non-host plant, L. sativa.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    绣球花(绣球花(Thunb。)Ser。)是一种著名的观赏植物,对铝(Al)具有很高的抗性。铝激活苹果酸转运蛋白(ALMT)家族编码阴离子通道,参与许多生理过程,如铝公差,pH调节,气孔运动,和矿物质营养。然而,关于绣球花基因家族的系统研究尚未报道。在这项研究中,从绣球花的转录组数据中确定了11个候选ALMT家族成员,根据系统发育树可以分为三个簇。蛋白质的理化性质,系统发育,分析了保守的基序和蛋白质结构。HmALMT的碱基保守基序分布与其他物种一致,具有高度保守的WEP图案。此外,组织特异性分析表明,在Al处理下,大多数HmALMT在茎中高表达。此外,HmALMT5,HmALMT9和HmALMT11在酵母中的过表达增强了它们对Al胁迫的耐受性。因此,以上结果揭示了HmALMTs在绣球花耐铝性中的功能作用。本研究为进一步阐明绣球花ALMT基因家族的功能机制和表达调控提供了参考。
    Hydrangea (Hydrangea macrophylla (Thunb.) Ser.) is a famous ornamental plant species with high resistance to aluminum (Al). The aluminum-activated malate transporter (ALMT) family encodes anion channels, which participate in many physiological processes, such as Al tolerance, pH regulation, stomatal movement, and mineral nutrition. However, systematic studies on the gene family have not been reported in hydrangea. In this study, 11 candidate ALMT family members were identified from the transcriptome data for hydrangea, which could be divided into three clusters according to the phylogenetic tree. The protein physicochemical properties, phylogeny, conserved motifs and protein structure were analyzed. The distribution of base conservative motifs of HmALMTs was consistent with that of other species, with a highly conserved WEP motif. Furthermore, tissue-specific analysis showed that most of the HmALMTs were highly expressed in the stem under Al treatment. In addition, overexpression of HmALMT5, HmALMT9 and HmALMT11 in yeasts enhanced their tolerance to Al stress. Therefore, the above results reveal the functional role of HmALMTs underlying the Al tolerance of hydrangea. The present study provides a reference for further research to elucidate the functional mechanism and expression regulation of the ALMT gene family in hydrangea.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    酸性土壤中的铝(Al)污染是稻田的主要问题,造成粮食产量损失,尤其是在泰国的中部平原。这项研究的目的是评估根组织中的铝含量,它易位到树叶,三种基因型水稻的铝毒性,RD35(局部耐酸),Azucena(阳性检查耐铝),和IR64(高产率)在0(对照)或1mMAlCl3(Al毒性)在pH4.5。水稻cv根组织中的Al含量。在1mMAlCl3下的RD35达到4.18mgg-1DW的峰值,并显着转移到叶片组织(0.35mgg-1DW),导致叶绿度(SPAD)降低(比对照降低44.9%)和净光合速率(Pn)下降(比对照降低54.5%)。相比之下,简历中的铝水平。Azucena和IR64在根中受到限制(2.12mgg-1DW),在叶组织中的易位量低(0.26mgg-1DW),导致保持SPAD和Pn的值。在简历中。RD35,根和芽性状,包括根长,根鲜重,射击高度,射击新鲜的重量,1mMAl处理中的芽干重比对照显着下降>35%,而这些参数在cvs中。保留了Azucena和IR64。根据结果,RD35水稻基因型被鉴定为铝敏感,因为它在地上和地下部分都显示出铝毒性,而Azucena和IR64被发现对1mMAl具有耐受性,因为它们证明了Al在根组织中的储存可以降低叶组织中的毒性。研究表明,根性状,射击属性,叶绿素降解,和光合还原可以成功地用于水稻育种计划中耐铝基因型的筛选。
    Aluminum (Al) contamination in acidic soil is a major problem in paddy field, causing grain yield loss, especially in central plains of Thailand. The objective of this study was to assess Al content in the root tissues, its translocation to the leaves, and Al toxicity in three genotypes of rice, RD35 (local acidic-tolerant), Azucena (positive-check Al-tolerant), and IR64 (high yielding) under 0 (control) or 1 mM AlCl3 (Al toxicity) at pH 4.5. Al content in the root tissues of rice cv. RD35 under 1 mM AlCl3 was peaked at 4.18 mg g‒1 DW and significantly translocated to leaf tissues (0.35 mg g‒1 DW), leading to reduced leaf greenness (SPAD) (by 44.9% over the control) and declined net photosynthetic rate (Pn) (by 54.5% over the control). In contrast, Al level in cvs. Azucena and IR64 was restricted in the roots (2.12 mg g‒1 DW) with low amount of translocation in the leaf tissues (0.26 mg g‒1 DW), resulting in maintained values of SPAD and Pn. In cv. RD35, root and shoot traits including root length, root fresh weight, shoot height, shoot fresh weight, and shoot dry weight in 1 mM Al treatment were significantly dropped by > 35% over the control, whereas these parameters in cvs. Azucena and IR64 were retained. Based on the results, RD35 rice genotype was identified as Al sensitive as it demonstrated Al toxicity in both aboveground and belowground parts, whereas Azucena and IR64 were found tolerant to 1 mM Al as they demonstrated storage of Al in the root tissues to reduce toxicity in the leaf tissues. The study suggests that root traits, shoot attributes, chlorophyll degradation, and photosynthetic reduction can be successfully employed for the screening of Al-tolerant genotypes in rice breeding programs.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    世界上超过40%的耕地是酸性的。铝胁迫已成为影响酸性土壤中植物生长和限制作物生产的全球性农业问题。植物已经进化出不同的调节机制来适应外源环境挑战,如铝应力,通过改变他们的增长模式。在过去的几十年里,揭示了植物对铝胁迫的反应和铝解毒机制的几个关键基因。然而,植物响应铝胁迫的信号通路和植物耐铝的调控机制仍然知之甚少。在这次审查中,本文对植物耐铝机制及植物激素对铝胁迫的分子调控机制的研究进展进行了综述。该综述提高了我们对植物响应铝胁迫的调控机制的认识,为耐铝作物的育种提供参考。
    Over 40% of arable land in the world is acidic. Al stress has become a global agricultural problem affecting plant growth and limiting crop production in acidic soils. Plants have evolved different regulatory mechanisms of adaptation to exogenous environmental challenges, such as Al stress, by altering their growth patterns. In the past decades, several key genes involved in plant response to Al stress and the mechanism of Al detoxification have been revealed. However, the signaling pathways of plant response to Al stress and the regulatory mechanism of plant Al tolerance remain poorly understood. In this review, we summarized the findings of recent studies on the plant Al tolerance mechanism and the molecular regulation mechanism of phytohormones in response to Al stress. This review improves our understanding of the regulatory mechanisms of plants in response to Al stress and provides a reference for the breeding of Al-tolerant crops.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    尽管Al3毒性是酸性土壤中作物生产的限制因素之一,对西瓜的Al3+耐受机制知之甚少,一种相当耐酸的作物。这项工作旨在确定H2O2清除途径与西瓜Al3耐受性相关的生长素糖基化之间的相互作用。通过分析耐Al3(ZJ)和Al3敏感(NBT)品种中激素相关ClUGTs和抗氧化酶基因的表达,我们确定了ClUGT75s(B1,B2和D1)和ClSOD1-2-ClCAT是与Al3耐受性相关的关键成分。Al3+胁迫显著增加NBT中H2O2含量92.7%,ZJ中H2O2含量42.3%,伴随着较少的Al3+-,生长素(IAA和IBA),ZJ中MDA含量高于NBT。这些发现与NBT中显着的ClSOD1-2表达和稳定的歧化活性比ZJ相吻合。因此,NBT根尖中H2O2含量高于ZJ,与生长素含量显着增加和ClSOD1-2上调相关。此外,ZJ中Al3+激活的ClUGT75D1和ClUGT75B2一致,IBA含量没有显著变化,表明糖基化介导的IBA含量变化可能与西瓜的Al3耐受性有关。此外,外源H2O2和IBA表明ClUGT75D1调节IBA可能依赖于H2O2背景。我们假设NBT中较高的H2O2水平抑制ClUGT75,导致生长素比ZJ根中的生长素增加。因此,在Al3胁迫下,H2O2和生长素的过量会加剧根伸长的抑制。我们的发现提供了有关H2O2在西瓜根尖中通过ClUGT75介导生长素糖基化介导Al3耐受性的许可作用的见解。
    Although Al3+-toxicity is one of the limiting factors for crop production in acidic soils, little is known about the Al3+-tolerance mechanism in watermelon, a fairly acid-tolerant crop. This work aimed to identify the interaction between the H2O2 scavenging pathway and auxin glycosylation relevant to watermelon Al3+-tolerance. By analyzing expressions of hormone-related ClUGTs and antioxidant enzyme genes in Al3+-tolerant (ZJ) and Al3+-sensitive (NBT) cultivars, we identified ClUGT75s (B1, B2, and D1) and ClSOD1-2-ClCAT as crucial components associated with Al3+-tolerance. Al3+-stress significantly increased H2O2 content by 92.7% in NBT and 42.3% in ZJ, accompanied by less Al3+-, auxin (IAA and IBA), and MDA contents in ZJ than NBT. These findings coincided with significant ClSOD1-2 expression and stable dismutation activity in NBT than ZJ. Hence, higher H2O2 content in the root apex of NBT than ZJ correlated with a significant increase in auxin content and ClSOD1-2 up-regulation. Moreover, Al3+-activated ClUGT75D1 and ClUGT75B2 in ZJ coincided with no considerable change in IBA content, suggesting that glycosylation-mediated changes in IBA content might be relevant to Al3+-tolerance in watermelon. Furthermore, exogenous H2O2 and IBA indicated ClUGT75D1 modulating IBA is likely dependent on H2O2 background. We hypothesize that a higher H2O2 level in NBT represses ClUGT75, resulting in increased auxin than those in ZJ roots. Thus, excess in both H2O2 and auxin aggravated the inhibition of root elongation under Al3+-stress. Our findings provide insights on the permissive action of H2O2 in the mediation of auxin glycosylation by ClUGT75 in root apex for Al3+-tolerance in watermelon.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

公众号