Al(2)O(3) coating

Al (2) O (3) 涂层
  • 文章类型: Journal Article
    Na3V2(PO4)3(NVP)遇到重大障碍,包括有限的固有电子和离子电导率,这阻碍了其商业可行性的潜力。目前,提出用Mn2+取代V3+以引入有利的载体,增强NVP系统的电子电导率,同时提供结构支持并稳定NASICON框架。这种取代也拓宽了Na+的迁移途径,加速离子传输。此外,为了增强稳定性,施加Al2O3涂层以抑制过渡金属Mn在电解质中的溶解。值得注意的是,Al2O3涂层在降低电解质中的HClO4浓度中起着三重作用,抑制Mn溶解,起离子传导相的作用。同样,碳纳米管(CNTs)在高温烧结过程中有效地阻止活性颗粒的团聚,从而优化NVP体系的电导率。此外,通过原位XRD测量研究了优异的结构稳定性,有效改善Na+去嵌入过程中的体积塌陷。此外,Na3V5.92/3Mn0.04(PO4)3/C@CNTs@1wt。%Al2O3(NVMP@CNTs@1wt。%Al2O3)具有独特的多孔结构,促进Na+的快速传输和增加电解质和阴极材料之间的界面面积。全面来说,NVMP@CNT@1wt。%Al2O3样品在0.1C时表现出显著的可逆比容量为122.6mAh/g。其在1C下保持115.9mAh/g的容量,在1000次循环后保持90.2mAh/g的容量。即使在30摄氏度,它实现了87.9mAh/g的容量,6000次循环后的容量保持率为84.87%。此外,NVMP@CNT@1wt。%Al2O3//CHC全电池在0.1C时可提供205.5mAh/g的高可逆容量,进一步表明在商业利用方面具有优越的应用潜力。
    Na3V2(PO4)3 (NVP) encounters significant obstacles, including limited intrinsic electronic and ionic conductivities, which hinder its potential for commercial feasibility. Currently, the substitution of V3+ with Mn2+ is proposed to introduce favorable carriers, enhancing the electronic conductivity of the NVP system while providing structural support and stabilizing the NASICON framework. This substitution also widens the Na+ migration pathways, accelerating ion transport. Furthermore, to bolster stability, Al2O3 coating is applied to suppress the dissolution of transition metal Mn in the electrolyte. Notably, the Al2O3 coating serves a triple role in reducing HClO4 concentration in the electrolyte, inhibiting Mn dissolution, and functioning as the ion-conducting phase. Likewise, carbon nanotubes (CNTs) effectively hinder the agglomeration of active particles during high-temperature sintering, thereby optimizing the conductivity of NVP system. In addition, the excellent structural stability is investigated by in situ XRD measurement, effectively improving the volume collapse during Na+ de-embedding. Moreover, the Na3V5.92/3Mn0.04(PO4)3/C@CNTs@1wt.%Al2O3 (NVMP@CNTs@1wt.%Al2O3) possesses unique porous structure, promoting rapid Na+ transport and increasing the interface area between the electrolyte and the cathode material. Comprehensively, the NVMP@CNTs@1wt.%Al2O3 sample demonstrates a remarkable reversible specific capacity of 122.6 mAh/g at 0.1 C. Moreover, it maintains a capacity of 115.9 mAh/g at 1 C with a capacity retention of 90.2 mAh/g after 1000 cycles. Even at 30 C, it achieves a capacity of 87.9 mAh/g, with a capacity retention rate of 84.87 % after 6000 cycles. Moreover, the NVMP@CNTs@1wt.%Al2O3//CHC full cell can deliver a high reversible capacity of 205.5 mAh/g at 0.1 C, further indicating the superior application potential in commercial utilization.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    表面改性是通过修饰电极-电解质界面来改善钠离子电池电化学性能的令人印象深刻且广泛使用的技术之一。在这里,我们使用原子层沉积(ALD)通过预制电极上的亚单层Al2O3涂层来修饰P2-Na0.5Mn0.5Co0.5O2的表面。使用各种结构和形态学研究确认相纯度。原始电极在0.5C时的初始放电容量为154mAhg-1,在40C倍率下,倍率性能较差,为23mAhg-1。另一方面,具有5次ALD涂层的界面改性阴极在0.5C和40C速率下提供174和45mAhg-1的高容量,分别。Co2/3氧化还原对用于法拉第过程,具有高可逆性以及抑制的P2-O2相变。Al2O3层的存在通过在较高的截止电位下抑制电解质氧化而充当人工阴极电解质界面。这通过在各种电流速率下循环之后表面改性电极的降低的电荷转移电阻清楚地得到证实。即使在高温条件下(50°C),界面层显著提高了电池的安全性,保证了阴极的稳定性。
    Surface modification is one of the impressive and widely used technique to improve the electrochemical performance of sodium-ion batteries by modifying the electrode-electrolyte interface. Herein, we used the atomic layer deposition (ALD) to modify the surface of P2-Na0.5Mn0.5Co0.5O2 by sub-monolayer Al2O3 coating on the prefabricated electrodes. Phase purity is confirmed using various structural and morphological studies. The pristine electrode delivered an initial discharge capacity of 154 mAh g-1 at 0.5C, and inferior rate performance of 23 mAh g-1 at 40C rate. On the other hand, the interfacial modified cathode with 5 cycles of ALD coating delivers a high capacity of 174 and 45 mAh g-1 at 0.5C and 40C rate, respectively. The Co2+/3+ redox couple is utilized for the faradaic process with high reversibility along with suppressed P2-O2 phase transition. The presence of the Al2O3 layer acts as an artificial cathode electrolyte interface by suppressing the electrolyte oxidation at higher cutoff potentials. This is clearly validated by the reduced charge transfer resistance of surface modified electrodes after cycling at various current rates. Even at an elevated temperature condition (50 °C), interfacial layer significantly improves the safety of the cell and ensures the stability of the cathode.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

公众号