9α-hydroxy-4-androstene-3,17-dione

  • 文章类型: Journal Article
    BACKGROUND: 9α-hydroxyandrost-4-ene-3,17-dione (9-OHAD) is a significant intermediate for the synthesis of glucocorticoid drugs. However, in the process of phytosterol biotransformation to manufacture 9-OHAD, product degradation, and by-products restrict 9-OHAD output. In this study, to construct a stable and high-yield 9-OHAD producer, we investigated a combined strategy of blocking Δ1‑dehydrogenation and regulating metabolic flux.
    RESULTS: Five 3-Ketosteroid-Δ1-dehydrogenases (KstD) were identified in Mycobacterium fortuitum ATCC 35855. KstD2 showed the highest catalytic activity on 3-ketosteroids, followed by KstD3, KstD1, KstD4, and KstD5, respectively. In particular, KstD2 had a much higher catalytic activity for C9 hydroxylated steroids than for C9 non-hydroxylated steroids, whereas KstD3 showed the opposite characteristics. The deletion of kstDs indicated that KstD2 and KstD3 were the main causes of 9-OHAD degradation. Compared with the wild type M. fortuitum ATCC 35855, MFΔkstD, the five kstDs deficient strain, realized stable accumulation of 9-OHAD, and its yield increased by 42.57%. The knockout of opccr or the overexpression of hsd4A alone could not reduce the metabolic flux of the C22 pathway, while the overexpression of hsd4A based on the knockout of opccr in MFΔkstD could remarkably reduce the contents of 9,21 ‑dihydroxy‑20‑methyl‑pregna‑4‑en‑3‑one (9-OHHP) by-products. The inactivation of FadE28-29 leads to a large accumulation of incomplete side-chain degradation products. Therefore, hsd4A and fadE28-29 were co-expressed in MFΔkstDΔopccr successfully eliminating the two by-products. Compared with MFΔkstD, the purity of 9-OHAD improved from 80.24 to 90.14%. Ultimately, 9‑OHAD production reached 12.21 g/L (83.74% molar yield) and the productivity of 9-OHAD was 0.0927 g/L/h from 20 g/L phytosterol.
    CONCLUSIONS: KstD2 and KstD3 are the main dehydrogenases that lead to 9-OHAD degradation. Hsd4A and Opccr are key enzymes regulating the metabolic flux of the C19- and C22-pathways. Overexpression of fadE28-29 can reduce the accumulation of incomplete degradation products of the side chains. According to the above findings, the MF-FA5020 transformant was successfully constructed to rapidly and stably accumulate 9-OHAD from phytosterols. These results contribute to the understanding of the diversity and complexity of steroid catabolism regulation in actinobacteria and provide a theoretical basis for further optimizing industrial microbial catalysts.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    9α-Hydroxy-4-androstene-3,17-dione (9-OH-AD) is one of the significant intermediates for the preparation of β-methasone, dexamethasone, and other steroids. In general, the key enzyme that enables the biotransformation of 4-androstene-3,17-dione (AD) to 9-OH-AD is 3-phytosterone-9α-hydroxylase (KSH), which consists of two components: a terminal oxygenase (KshA) and ferredoxin reductase (KshB). The reaction is carried out with the concomitant oxidation of NADH to NAD+. In this study, the more efficient 3-phytosterone-9α-hydroxylase oxygenase (KshC) from the Mycobacterium sp. strain VKM Ac-1817D was confirmed and compared with reported KshA. To evaluate the function of KshC on the bioconversion of AD to 9-OH-AD, the characterization of KshC and the compounded system of KshB, KshC, and NADH was constructed. The optimum ratio of KSH oxygenase to reductase content was 1.5:1. An NADH regeneration system was designed by introducing a formate dehydrogenase, further confirming that a more economical process for biological transformation from AD to 9-OH-AD was established. A total of 7.78 g of 9-OH-AD per liter was achieved through a fed-batch process with a 92.11% conversion rate (mol/mol). This enzyme-mediated hydroxylation method provides an environmentally friendly and economical strategy for the production of 9-OH-AD.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

       PDF(Pubmed)

  • 文章类型: Journal Article
    3-Ketosteroid 9α-hydroxylase (Ksh) consists of a terminal oxygenase (KshA) and a ferredoxin reductase and is indispensable in the cleavage of steroid nucleus in microorganisms. The activities of Kshs are crucial factors in determining the yield and distribution of products in the biotechnological transformation of sterols in industrial applications. In this study, two KshA homologues, KshA1N and KshA2N, were characterized and further engineered in a sterol-digesting strain, Mycobacterium neoaurum ATCC 25795, to construct androstenone-producing strains. kshA1 N is a member of the gene cluster encoding sterol catabolism enzymes, and its transcription exhibited a 4.7-fold increase under cholesterol induction. Furthermore, null mutation of kshA1 N led to the stable accumulation of androst-4-ene-3,17-dione (AD) and androst-1,4-diene-3,17-dione (ADD). We determined kshA2 N to be a redundant form of kshA1 N Through a combined modification of kshA1 N, kshA2 N, and other key genes involved in the metabolism of sterols, we constructed a high-yield ADD-producing strain that could produce 9.36 g liter-1 ADD from the transformation of 20 g liter-1 phytosterols in 168 h. Moreover, we improved a previously established 9α-hydroxy-AD-producing strain via the overexpression of a mutant KshA1N that had enhanced Ksh activity. Genetic engineering allowed the new strain to produce 11.7 g liter-1 9α-hydroxy-4-androstene-3,17-dione (9-OHAD) from the transformation of 20.0 g liter-1 phytosterol in 120 h.IMPORTANCE Steroidal drugs are widely used for anti-inflammation, anti-tumor action, endocrine regulation, and fertility management, among other uses. The two main starting materials for the industrial synthesis of steroid drugs are phytosterol and diosgenin. The phytosterol processing is carried out by microbial transformation, which is thought to be superior to the diosgenin processing by chemical conversions, given its simple and environmentally friendly process. However, diosgenin has long been used as the primary starting material instead of phytosterol. This is in response to challenges in developing efficient microbial strains for industrial phytosterol transformation, which stem from complex metabolic processes that feature many currently unclear details. In this study, we identified two oxygenase homologues of 3-ketosteroid-9α-hydroxylase, KshA1N and KshA2N, in M. neoaurum and demonstrated their crucial role in determining the yield and variety of products from phytosterol transformation. This work has practical value in developing industrial strains for phytosterol biotransformation.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    OBJECTIVE: To enhance the yield of 9α-hydroxy-4-androstene-3,17-dione (9-OHAD) from phytosterols, a phytosterol transport system was constructed in Mycobacterium sp. strain MS136.
    RESULTS: 9-OHAD can be produced via the controlled degradation of phytosterols by mycobacteria. This involves an active transport process that requires trans-membrane proteins and ATP. A phytosterol transport system from Mycobacterium tuberculosis H37Rv was constructed in Mycobacterium sp. strain MS136 by co-expression of an energy-related gene, mceG, and two integrated membrane protein genes, yrbE4A and yrbE4B. The resultant of the Mycobacterium sp. strain MS136-GAB gave 5.7 g 9-OHAD l-1, which was a 20% increase over 4.7 g l-1 by the wild-type strain. The yield of 9-OHAD was increased to 6.0 g l-1 by optimization of fermentation conditions, when 13 g phytosterols l-1 were fermented for 84 h in 30 ml biotransformation medium in shake flasks.
    CONCLUSIONS: Phytosterol transport system plays an active role in the uptake and transport of sterols, cloning of the system improved the mass transfer of phytosterols and increased the production of 9-OHAD.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    3-酮类固醇9α-羟化酶(KSH,由KshA和KshB组成),类固醇代谢的关键酶,可以催化NADH作为辅酶将4-雄烯-3,17-二酮(AD)转化为9α-羟基-4-雄烯-3,17-二酮(9OHAD)。在这项工作中,新耳分枝杆菌JC-12的KSH被成功克隆并在枯草芽孢杆菌168中过表达。通过SDS-PAGE和KSH活性测定分析KSH的表达和纯化。使用纯化的KshA和KshB进行KSH的初步表征。结果表明,KSH非常不稳定,它的活性被大多数金属离子抑制,特别是Zn(2+)。重组枯草芽孢杆菌的全细胞,KSH和葡萄糖1-脱氢酶(GDH)的共表达,用作生物催化剂将AD转化为9OHAD。生物催化剂,其中细胞内NADH再生,有效催化AD生物转化为9OHAD,转化率为90.4%,生产率为0.45g(Lh)(-1),分别。这项工作提出了一种通过使用枯草芽孢杆菌作为有前途的全细胞生物催化剂宿主并共表达KSH和GDH来构建NADH再生系统来有效生产9OHAD的策略。
    3-Ketosteroid 9α-hydroxylase (KSH, consisting of KshA and KshB), a key enzyme in steroid metabolism, can catalyze the transformation of 4-androstene-3,17-dione (AD) to 9α-hydroxy-4-androstene-3,17-dione (9OHAD) with NADH as coenzyme. In this work, KSH from Mycobacterium neoaurum JC-12 was successfully cloned and overexpressed in Bacillus subtilis 168. The expression and purification of KSH was analyzed by SDS-PAGE and KSH activity assay. Preliminary characterization of KSH was performed using purified KshA and KshB. The results showed that KSH was very unstable, and its activity was inhibited by most metal ions, especially Zn(2+). The whole-cells of recombinant B. subtilis, co-expression of KSH and glucose 1-dehydrogenase (GDH), were used as biocatalyst to convert AD to 9OHAD. The biocatalyst, in which the intracellular NADH was regenerated, efficiently catalyzed the bioconversion of AD to 9OHAD with a conversion rate of 90.4 % and productivity of 0.45 g (L h)(-1), respectively. This work proposed a strategy for efficiently producing 9OHAD by using B. subtilis as a promising whole-cell biocatalyst host and co-expressing KSH and GDH to construct a NADH regeneration system.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    3-Ketosteroid-△(1)-dehydrogenase (KstD) is a key enzyme involved in the microbial catabolism of sterols. Here, three homologues of KstD were characterized from Mycobacterium neoaurum ATCC 25795, showing distinct substrate preferences and transcriptional responses to steroids. Single deletion of any MN-kstD failed to result in a stable and maximum accumulation of 9-OHAD due to residual KstD activities. To develop stable 9-OHAD producers, all of these MN-KstDs were inactivated, which led to about 6.02g l(-1) of 9-OHAD from 15g l(-1) of phytosterols. However, the product was mixed with 1.55g l(-1) of AD as a major by-product. To transform AD, the oxygenase component of 3-ketosteroid-9α-hydroxylase (KSH), encoded by kshA, was overexpressed. As a result, the yield of 9-OHAD increased to 7.33g l(-1) with less than 0.31g l(-1) of AD and the selectivity of 9-OHAD production was improved to 95-97% among metabolites.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

公众号