β-oxidation

β - 氧化
  • 文章类型: Journal Article
    这项研究调查了不同脂质比例对中温厌氧膜生物反应器(AnMBR)中高脂食品废物(FW)厌氧共消化的影响。在5%的脂质浓度下,实现了最佳沼气产量(3.84L/L/d)和脂质去除效率(78%);然而,脂质浓度的增加导致长链脂肪酸(LCFAs)和挥发性脂肪酸(VFA)的大量积累。批量测试进一步证明了各种类型的LCFAs的影响,硬脂酸显示最慢的微生物生长速率(0.033d-1),证实了它在乙酸盐为主的VFA积累中的作用,在脂质水平升高时可能会限制产甲烷过程。此外,在8%的脂质含量,关键LCFA降解酶的下调和氢营养型产甲烷菌的优势表明不利条件。证明了LCFA降解动力学和微生物群落之间复杂相互作用对系统效率的重要性,为优化和管理高脂废物提供见解。
    This study investigated the effects of varying lipid ratios on the anaerobic co-digestion of high-lipid food waste (FW) in a mesophilic anaerobic membrane bioreactor (AnMBR). At a lipid concentration of 5 %, optimal biogas production (3.84 L/L/d) and lipid removal efficiency (78 %) were achieved; however, increasing lipid concentrations resulted in significant accumulations of long-chain fatty acids (LCFAs) and volatile fatty acids (VFAs). Batch tests further demonstrated the impact of various types of LCFAs, with stearic acid showing the slowest microbial growth rate (0.033d-1), confirming its role in the accumulation of acetate-dominated VFAs, potentially limiting the methanogenesis process at elevated lipid levels. Furthermore, at 8 % lipid content, the downregulation of key LCFA degradation enzymes and dominance of hydrogenotrophic methanogens indicated adverse conditions. The importance of the intricate interplay between LCFA degradation kinetics and microbial community for the system efficiency was evidenced, offering insights for optimizing and managing high-lipidic wastes.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    含油酵母StarkeyiLipomyces是一种有吸引力的工业酵母,可以积累大量的细胞内脂质。鉴定与脂质积累有关的基因不仅有助于阐明脂质积累机制,而且有助于培育工业上有用的高脂质生产菌株。在这项研究中,抑制脂质积累相关基因(SLA1)被鉴定为脂质生产率降低的sr22突变体的致病基因。SLA1突变降低了脂质生物合成中的基因表达,并增加了β-氧化中的基因表达。我们的结果表明,SLA1突变可能导致脂质生产率降低。SLA1缺失还表现出β-氧化基因表达减少和脂质积累增加,这表明SLA1缺失是改善淀粉乳杆菌脂质积累的有用工具,可用于工业化。
    The oleaginous yeast Lipomyces starkeyi is an attractive industrial yeast that can accumulate high amounts of intracellular lipids. Identification of genes involved in lipid accumulation contributes not only to elucidating the lipid accumulation mechanism but also to breeding industrially useful high lipid-producing strains. In this study, the suppressed lipid accumulation-related gene (SLA1) was identified as the causative gene of the sr22 mutant with decreased lipid productivity. SLA1 mutation reduced gene expression in lipid biosynthesis and increased gene expression in β-oxidation. Our results suggest that SLA1 mutation may leads to decreased lipid productivity. SLA1 deletion also exhibited decreased gene expression in β-oxidation and increased lipid accumulation, suggesting that SLA1 deletion is a useful tool to improve lipid accumulation in L. starkeyi for industrialization.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    N-乙酰半胱氨酸(NAC)是一种在各种条件下使用的通用药物,但局限性和毒性尚不清楚。破译了正常小鼠腹膜内注射NAC的急性毒性和毒理学机制。雄性和雌性BALB/cByJNarl小鼠的LD50为800mg/kg和933mg/kg。研究了800mg/kgNAC(N800)的毒理机制。肝肾指标的血清生物标志物急剧增加,其次是肝微泡脂肪变性,肾小管损伤和坏死,和脾红髓萎缩和丢失。因此,N800导致小鼠死亡主要是由于急性肝脏,肾,和脾脏损伤。NAC(N275)的安全剂量(275mg/kg)通过增加谷胱甘肽水平和过氧化氢酶活性来增加肝脏的抗氧化能力。N275升高脂质转运体的肝脏基因表达,脂质合成,β-氧化,和生酮,表明脂质生产和消费之间的平衡,最后,增加ATP产量。相比之下,N800通过抑制Gclc降低谷胱甘肽水平来增加肝脏氧化应激,并降低过氧化氢酶活性。N800降低肝脏脂质转运体基因表达,脂质合成,和干扰的β氧化,导致脂质积累和Cyp2E1表达增加,最后,ATP产量下降。因此,正常个体的NAC剂量有限,尤其是通过腹膜内注射或类似方式。
    N-acetyl cysteine (NAC) is a versatile drug used in various conditions, but the limitations and toxicities are not clear. The acute toxicity and toxicological mechanisms of an intraperitoneal injection of NAC in normal mice were deciphered. The LD50 for male and female BALB/cByJNarl mice were 800 mg/kg and 933 mg/kg. The toxicological mechanisms of 800 mg/kg NAC (N800) were investigated. The serum biomarkers of hepatic and renal indices dramatically increased, followed by hepatic microvesicular steatosis, renal tubular injury and necrosis, and splenic red pulp atrophy and loss. Thus, N800 resulted in mouse mortality mainly due to acute liver, kidney, and spleen damages. The safe dose (275 mg/kg) of NAC (N275) increased hepatic antioxidant capacity by increasing glutathione levels and catalase activity. N275 elevated the hepatic gene expressions of lipid transporter, lipid synthesis, β-oxidation, and ketogenesis, suggesting a balance between lipid production and consumption, and finally, increased ATP production. In contrast, N800 increased hepatic oxidative stress by decreasing glutathione levels through suppressing Gclc, and reducing catalase activity. N800 decreased the hepatic gene expressions of lipid transporter, lipid synthesis, and interferred β-oxidation, leading to lipid accumulation and increasing Cyp2E1 expression, and finally, decreased ATP production. Therefore, NAC doses are limited for normal individuals, especially via intraperitoneal injection or similar means.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    猪流行性腹泻病毒(PEDV)属于冠状病毒家族中的Alphacoronavirus属,引起仔猪严重的水样腹泻,造成重大的经济损失。中链酰基辅酶A脱氢酶(ACADM)是一种参与与代谢性疾病和病原体感染相关的脂质代谢的酶。尽管如此,ACADM在调节PEDV复制中的确切作用仍不确定。在这项研究中,我们通过免疫沉淀-质谱(IP-MS)分析鉴定了ACADM为NSP4的宿主结合伴侣.随后通过共免疫沉淀和激光共聚焦显微镜证实了ACADM和NSP4之间的相互作用。在此之后,在PEDV感染期间观察到ACADM表达显著升高。ACADM过表达有效抑制病毒复制,而ACADM敲除促进病毒复制,提示ACADM对PEDV感染有负调节作用。此外,我们首次证明脂肪酸β-氧化影响PEDV的复制,抑制脂肪酸β-氧化减少PEDV复制。ACADM降低PEDV诱导的β-氧化以抑制PEDV复制。机械上,ACADM通过阻碍AMPK介导的吸脂性降低了细胞游离脂肪酸(FFA)水平和随后的β-氧化。总之,我们的结果表明,ACADM通过调节脂质代谢在PEDV复制中起负调节作用。本研究提出了一种预防和控制PEDV感染的新方法。
    Porcine epidemic diarrhea virus (PEDV) belongs to the Alphacoronavirus genus within the Coronavirus family, causing severe watery diarrhea in piglets and resulting in significant economic losses. Medium-chain acyl-CoA dehydrogenase (ACADM) is an enzyme participating in lipid metabolism associated with metabolic diseases and pathogen infections. Nonetheless, the precise role of ACADM in regulating PEDV replication remains uncertain. In this study, we identified ACADM as the host binding partner of NSP4 via immunoprecipitation-mass spectrometry analysis. The interaction between ACADM and NSP4 was subsequently corroborated through coimmunoprecipitation and laser confocal microscopy. Following this, a notable upsurge in ACADM expression was observed during PEDV infection. ACADM overexpression effectively inhibited virus replication, whereas ACADM knockdown facilitated virus replication, suggesting ACADM has negative regulation effect on PEDV infection. Furthermore, we demonstrated fatty acid β-oxidation affected PEDV replication for the first time, inhibition of fatty acid β-oxidation reduced PEDV replication. ACADM decreased PEDV-induced β-oxidation to suppress PEDV replication. Mechanistically, ACADM reduced cellular free fatty acid levels and subsequent β-oxidation by hindering AMPK-mediated lipophagy. In summary, our results reveal that ACADM plays a negative regulatory role in PEDV replication by regulating lipid metabolism. The present study introduces a novel approach for the prevention and control of PEDV infection.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    E3连接酶是蛋白质降解所需的关键酶。在这里,我们鉴定了一个含有C3H2C3RING结构域的E3泛素连接酶基因,命名为GhATL68b。它在发育中的棉纤维细胞中优先和高度表达,在植物中比在动物或古细菌中更保守。发现该基因在各种二倍体棉花中的所有四个直向同源拷贝和异源四倍体G.hirsutum中的八个同源拷贝都起源于一个共同的祖先,该祖先可以追溯到大约9.92亿年前(MYA)。结构变异(SVs)发生在G的启动子区域。G.草根,植物G.arboreum和raimondii具有显着不同的甲基化模式。纯合的CRISPR-Cas9敲除棉花品系在上半平均长度方面产生了显着的纤维质量差,断裂伸长率,均匀性和成熟纤维重量。GhATL68b被证明可以调节2,4-二烯酰辅酶A还原酶(GhDECR)的稳态,一种限速酶,通过泛素蛋白酶体途径通过体外泛素化和无细胞蛋白质降解试验,对多不饱和脂肪酸(PUFA)进行β-氧化。从这些敲除突变体中收获的纤维细胞含有明显较低水平的PUFA,这对甘油磷脂的生产以及质膜流动性的调节都很重要。最后,通过添加亚麻酸(C18:3)可以完全补偿突变的纤维生长缺陷表型,胚珠培养基中外部最丰富的PUFA类型。据我们所知,这是第一个实验表征的C3H2C3型E3泛素连接酶,参与调节成纤维细胞伸长,因此,它可能为我们提供一个新的遗传目标,以改善棉花皮棉生产。
    E3 ligases are key enzymes required for protein degradation. Here, we identified a C3H2C3 RING domain-containing E3 ubiquitin ligase gene named GhATL68b. It is preferentially and highly expressed in developing cotton fiber cells and shows greater conservation in plants than in animals or archaea. The four orthologous copies of this gene in various diploid cottons and eight in the allotetraploid G. hirsutum were found to have originated from a single common ancestor that can be traced back to Chlamydomonas reinhardtii at about 992 million years ago. Structural variations in the GhATL68b promoter regions of G. hirsutum, G. herbaceum, G. arboreum, and G. raimondii are correlated with significantly different methylation patterns. Homozygous CRISPR-Cas9 knockout cotton lines exhibit significant reductions in fiber quality traits, including upper-half mean length, elongation at break, uniformity, and mature fiber weight. In vitro ubiquitination and cell-free protein degradation assays revealed that GhATL68b modulates the homeostasis of 2,4-dienoyl-CoA reductase, a rate-limiting enzyme for the β-oxidation of polyunsaturated fatty acids (PUFAs), via the ubiquitin proteasome pathway. Fiber cells harvested from these knockout mutants contain significantly lower levels of PUFAs important for production of glycerophospholipids and regulation of plasma membrane fluidity. The fiber growth defects of the mutant can be fully rescued by the addition of linolenic acid (C18:3), the most abundant type of PUFA, to the ovule culture medium. This experimentally characterized C3H2C3 type E3 ubiquitin ligase involved in regulating fiber cell elongation may provide us with a new genetic target for improved cotton lint production.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    过氧化物酶体的功能之一是脂肪酸(FA)的氧化。这种功能在我们生活中的重要性由参与这些过程的蛋白质的遗传缺失引起的过氧化物酶体紊乱的存在证明。与线粒体氧化不同,过氧化物酶体氧化与ATP的产生没有直接联系。FA氧化在过氧化物酶体中的作用是什么?最近的研究表明,过氧化物酶体为内质网中的脂质合成提供了基础,并促进了细胞内碳再循环,以进行膜质量控制。超长链脂肪酸(VLCFAs)的积累,它们是过氧化物酶体底物,是许多类型的过氧化物酶体紊乱的诊断标记。然而,VLCFA积累与这些疾病的各种症状之间的关系尚不清楚.最近,我们开发了一种在水性介质中溶解VLCFAs的方法,发现补充油酸可以减轻VLCFA的毒性。在这一章中,我们介绍了过氧化物酶体FA氧化的生理作用以及从VLCFA积累的过氧化物酶体缺陷细胞获得的知识。
    One of the functions of peroxisomes is the oxidation of fatty acids (FAs). The importance of this function in our lives is evidenced by the presence of peroxisomal disorders caused by the genetic deletion of proteins involved in these processes. Unlike mitochondrial oxidation, peroxisomal oxidation is not directly linked to ATP production. What is the role of FA oxidation in peroxisomes? Recent studies have revealed that peroxisomes supply the building blocks for lipid synthesis in the endoplasmic reticulum and facilitate intracellular carbon recycling for membrane quality control. Accumulation of very long-chain fatty acids (VLCFAs), which are peroxisomal substrates, is a diagnostic marker in many types of peroxisomal disorders. However, the relationship between VLCFA accumulation and various symptoms of these disorders remains unclear. Recently, we developed a method for solubilizing VLCFAs in aqueous media and found that VLCFA toxicity could be mitigated by oleic acid replenishment. In this chapter, we present the physiological role of peroxisomal FA oxidation and the knowledge obtained from VLCFA-accumulating peroxisome-deficient cells.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    本研究应用颗粒活性炭(GAC)改善长链脂肪酸(LCFA)的厌氧消化。新的动力学被认为描述了GAC对LCFA降解的影响,包括i)GAC对LCFA的吸附动力学,ii)LCFA的β-氧化途径,iii)通过直接种间电子转移(DIET)改善附着的生物质。所开发的模型模拟了硬脂酸的厌氧消化,棕榈酸,肉豆蔻酸,和月桂酸与1.00和2.00gl-1的GAC。仿真结果表明,加入GAC导致公里数增加,CnGAC和km,ACGAC。随着GAC浓度的增加,当积累的乙酸浓度降低时,动力学参数值增加。因此,GAC改善了附着互养群落的动力学参数。
    This study applied granular activated carbon (GAC) to improve the anaerobic digestion of long-chain fatty acid (LCFA). New kinetics were considered to describe the effect of GAC on the LCFA degradation, including i) The adsorption kinetics of GAC for LCFA, ii) The β-oxidation pathway of LCFA, iii) The attached biomass improved by direct interspecies electron transfer (DIET). The developed model simulated the anaerobic digestion of stearic acid, palmitic acid, myristic acid, and lauric acid with 1.00 and 2.00 g l-1 of GAC. The simulation results suggested that adding GAC led to the increase of km,CnGAC and km,acGAC. As the concentration of GAC increased, the values of kinetic parameters increased while the accumulated acetate concentration decreased. Thus, GAC improved the kinetic parameters of the attached syntrophic communities.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    心脏根据可用性和能量需求改变脂肪酸和葡萄糖的速率和相对氧化。当葡萄糖利用率增加时,胰岛素在减少脂肪酸和增加葡萄糖氧化的过程中起着至关重要的作用。胰岛素敏感性和代谢灵活性的丧失可导致心血管疾病。因此,确定胰岛素调节心脏中底物利用的机制是重要的。线粒体丙酮酸脱氢酶(PDH)是用于ATP产生的葡萄糖氧化的关键调节位点。然而,胰岛素对PDH活性的影响尚未完全描述,特别是在心脏。我们在体内寻找胰岛素刺激心脏PDH的证据,并且该过程是通过抑制脂肪酸氧化来驱动的。注射胰岛素的小鼠表现出心脏PDH的去磷酸化和激活。这伴随着丙二酰辅酶A含量的增加,肉碱棕榈酰转移酶1(CPT1)的抑制剂,因此,线粒体脂肪酸的进口。给予CPT1抑制剂奥苯尼辛足以激活PDH。丙二酰辅酶A由乙酰辅酶A羧化酶(ACC)产生。心脏ACC的药理抑制或敲除减少了胰岛素依赖性丙二酰辅酶A的产生和PDH的激活。最后,循环胰岛素和心脏葡萄糖利用表现出反映营养状况的每日节律。我们证明了PDH活性的时间依赖性变化是介导的,在某种程度上,通过ACC依赖性生产丙二酰辅酶A。因此,通过抑制脂肪酸氧化,胰岛素相互激活PDH。这些研究确定了促进心脏葡萄糖氧化和治疗心脏病的潜在分子靶标。
    The heart alters the rate and relative oxidation of fatty acids and glucose based on availability and energetic demand. Insulin plays a crucial role in this process diminishing fatty acid and increasing glucose oxidation when glucose availability increases. Loss of insulin sensitivity and metabolic flexibility can result in cardiovascular disease. It is therefore important to identify mechanisms by which insulin regulates substrate utilization in the heart. Mitochondrial pyruvate dehydrogenase (PDH) is the key regulatory site for the oxidation of glucose for ATP production. Nevertheless, the impact of insulin on PDH activity has not been fully delineated, particularly in the heart. We sought in vivo evidence that insulin stimulates cardiac PDH and that this process is driven by the inhibition of fatty acid oxidation. Mice injected with insulin exhibited dephosphorylation and activation of cardiac PDH. This was accompanied by an increase in the content of malonyl-CoA, an inhibitor of carnitine palmitoyltransferase 1 (CPT1), and, thus, mitochondrial import of fatty acids. Administration of the CPT1 inhibitor oxfenicine was sufficient to activate PDH. Malonyl-CoA is produced by acetyl-CoA carboxylase (ACC). Pharmacologic inhibition or knockout of cardiac ACC diminished insulin-dependent production of malonyl-CoA and activation of PDH. Finally, circulating insulin and cardiac glucose utilization exhibit daily rhythms reflective of nutritional status. We demonstrate that time-of-day-dependent changes in PDH activity are mediated, in part, by ACC-dependent production of malonyl-CoA. Thus, by inhibiting fatty acid oxidation, insulin reciprocally activates PDH. These studies identify potential molecular targets to promote cardiac glucose oxidation and treat heart disease.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    葡萄糖和脂质的代谢在身体的正常稳态中起着至关重要的作用。虽然葡萄糖是主要的能量底物,在缺席的情况下,脂质代谢成为能量的主要来源。脂肪酸氧化(FAO)的主要手段通过β-氧化在线粒体基质中发生。胶质母细胞瘤(GBM)是原发性恶性脑肿瘤的最常见形式(45.6%),发病率为3.1/100,000。在GBM细胞和周围微环境中发现的代谢变化与增殖有关,迁移,和对治疗的抵抗力。肿瘤细胞以氧化磷酸化(OXPHOS)为代价,使用糖酵解进行代谢重塑,被称为Warburg效应。特殊脂肪酸(FAs)转运蛋白,如FAT,FABP,来自肿瘤微环境的FATP或FATP在GBM中过表达,并有助于增加的脂质的吸收和储存,这将提供足够的能量用于肿瘤生长和侵袭。这篇综述概述了关键酶,运输商,以及正常与GBM细胞中FAs和酮体(KBs)的主要调节途径,强调需要开发新的治疗策略来提高GBM患者的治疗效果。
    The metabolism of glucose and lipids plays a crucial role in the normal homeostasis of the body. Although glucose is the main energy substrate, in its absence, lipid metabolism becomes the primary source of energy. The main means of fatty acid oxidation (FAO) takes place in the mitochondrial matrix through β-oxidation. Glioblastoma (GBM) is the most common form of primary malignant brain tumor (45.6%), with an incidence of 3.1 per 100,000. The metabolic changes found in GBM cells and in the surrounding microenvironment are associated with proliferation, migration, and resistance to treatment. Tumor cells show a remodeling of metabolism with the use of glycolysis at the expense of oxidative phosphorylation (OXPHOS), known as the Warburg effect. Specialized fatty acids (FAs) transporters such as FAT, FABP, or FATP from the tumor microenvironment are overexpressed in GBM and contribute to the absorption and storage of an increased amount of lipids that will provide sufficient energy used for tumor growth and invasion. This review provides an overview of the key enzymes, transporters, and main regulatory pathways of FAs and ketone bodies (KBs) in normal versus GBM cells, highlighting the need to develop new therapeutic strategies to improve treatment efficacy in patients with GBM.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    血红素生物合成是从细菌到高等动物的高度保守的途径。Heme,作为参与多种生化过程的各种酶的辅基,在几乎所有物种中都是必不可少的,使血红素稳态对生命至关重要。然而,血红素在丝状真菌中的生物学功能研究很少。在这项研究中,我们研究了血红素在镰刀菌中的作用。一个在血红素合成中缺乏限速酶的突变体,卟啉原III氧化酶(Cpo)或铁螯合酶(Fc),使用同源重组策略构建。结果表明,这些酶的缺失对禾谷草是致命的,但是添加血红素可以挽救生长缺陷,所以我们在血红素的帮助下进行了进一步的研究。结果表明,血红素是FgCyp51活性所必需的,血红素的缺乏增加了对戊唑醇的敏感性,并导致了FgCYP51在谷草中的上调。此外,血红素在谷草的生命周期中起着不可或缺的作用,这对营养生长至关重要,分生孢子,外部应激反应(尤其是氧化应激),脂质积累,脂肪酸β-氧化,自噬,和毒力。
    Heme biosynthesis is a highly conserved pathway from bacteria to higher animals. Heme, which serves as a prosthetic group for various enzymes involved in multiple biochemical processes, is essential in almost all species, making heme homeostasis vital for life. However, studies on the biological functions of heme in filamentous fungi are scarce. In this study, we investigated the role of heme in Fusarium graminearum. A mutant lacking the rate-limiting enzymes in heme synthesis, coproporphyrinogen III oxidase (Cpo) or ferrochelatase (Fc), was constructed using a homologous recombination strategy. The results showed that the absence of these enzymes was lethal to F. graminearum, but the growth defect could be rescued by the addition of hemin, so we carried out further studies with the help of hemin. The results demonstrated that heme was required for the activity of FgCyp51, and its absence increased the sensitivity to tebuconazole and led to the upregulation of FgCYP51 in F. graminearum. Additionally, heme plays an indispensable role in the life cycle of F. graminearum, which is essential for vegetative growth, conidiation, external stress response (especially oxidative stress), lipid accumulation, fatty acid β-oxidation, autophagy, and virulence.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

公众号