β-cells

β 细胞
  • 文章类型: Journal Article
    胰腺内的β细胞在胰岛素的产生和分泌中起着关键作用。对血糖水平波动的反应。然而,肥胖等因素,饮食习惯,长期的胰岛素抵抗会损害β细胞功能,有助于2型糖尿病(T2D)的发展。这种功能障碍的一个关键方面涉及β细胞去分化和转分化,其中这些细胞失去了它们的专门特征并采用不同的身份,特别是向祖细胞或其他胰腺细胞类型如α细胞的转变。这个过程显着导致β细胞功能障碍和T2D的进展,通常超过β细胞完全丢失的影响。β细胞特有的特定基因和转录因子表达的改变,随着表观遗传修饰和环境因素如炎症,氧化应激,和线粒体功能障碍,支持β细胞去分化和T2D的发生。最近的研究强调了靶向β细胞去分化以有效管理T2D的潜在治疗价值。在这次审查中,我们的目标是剖析控制β细胞去分化的复杂机制,并探索源于这些见解的治疗途径。
    The β-cells within the pancreas play a pivotal role in insulin production and secretion, responding to fluctuations in blood glucose levels. However, factors like obesity, dietary habits, and prolonged insulin resistance can compromise β-cell function, contributing to the development of Type 2 Diabetes (T2D). A critical aspect of this dysfunction involves β-cell dedifferentiation and transdifferentiation, wherein these cells lose their specialized characteristics and adopt different identities, notably transitioning towards progenitor or other pancreatic cell types like α-cells. This process significantly contributes to β-cell malfunction and the progression of T2D, often surpassing the impact of outright β-cell loss. Alterations in the expressions of specific genes and transcription factors unique to β-cells, along with epigenetic modifications and environmental factors such as inflammation, oxidative stress, and mitochondrial dysfunction, underpin the occurrence of β-cell dedifferentiation and the onset of T2D. Recent research underscores the potential therapeutic value for targeting β-cell dedifferentiation to manage T2D effectively. In this review, we aim to dissect the intricate mechanisms governing β-cell dedifferentiation and explore the therapeutic avenues stemming from these insights.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    长期暴露于高血糖状态会导致β细胞功能障碍,特别是线粒体功能障碍,以及炎症和氧化应激反应,被认为是β细胞死亡的主要原因和糖尿病的标志。植物活性成分可能在血糖控制中起关键作用。表没食子儿茶素没食子酸酯(EGCG)是源自茶的具有抗糖尿病特性的特征性儿茶素。尽管如此,其潜在的机制仍然难以捉摸。在这里,研究了EGCG对高糖(33mM)诱导的胰岛β细胞功能障碍的保护作用及其可能的分子机制。简而言之,MIN6细胞用葡萄糖和EGCG(10μM,20µM,和40µM)持续48小时。我们的结果表明,EGCG剂量依赖性地恢复了线粒体膜电位,并伴随着细胞凋亡的减轻。机械上,EGCG处理后,凋亡蛋白BAX和动态相关蛋白1(DRP1)的表达水平显着下调,而抗凋亡蛋白BCL-2的表达显着上调。一起来看,EGCG通过靶向DRP1相关的线粒体凋亡途径减轻高糖诱导的胰岛β细胞功能障碍,因此可以作为2型糖尿病患者β细胞功能障碍的营养干预措施。
    Long-term exposure to hyperglycemic conditions leads to β-cell dysfunction, particularly mitochondrial dysfunction, and inflammatory and oxidative stress responses, which are considered the primary causes of β-cell death and the hallmarks of diabetes. Plant-active ingredients may play a key role in glycemic control. Epigallocatechin gallate (EGCG) is a characteristic catechin derived from tea that possesses anti-diabetic properties. Nonetheless, its underlying mechanisms remain elusive. Herein, the protective role of EGCG on high glucose (33 mM)-induced pancreatic beta cell dysfunction and its possible molecular mechanisms were investigated. Briefly, MIN6 cells were treated with glucose and EGCG (10 µM, 20 µM, and 40 µM) for 48 h. Our results revealed that EGCG dose-dependently restored mitochondrial membrane potential and concomitantly alleviated cell apoptosis. Mechanistically, the expression level of apoptotic protein BAX and Dynamic related protein 1 (DRP1) was significantly downregulated following EGCG treatment, whereas that of the anti-apoptotic protein BCL-2 was significantly upregulated. Taken together, EGCG alleviated high glucose-induced pancreatic beta cell dysfunction by targeting the DRP1-related mitochondrial apoptosis pathway and thus can serve as a nutritional intervention for the preservation of beta cell dysfunction in patients with type 2 diabetes mellitus.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    细胞因子诱导的β细胞凋亡是1型糖尿病(T1D)的主要致病机制。尽管在理解其潜在机制方面取得了重大进展,很少有药物被翻译来保护T1D中的β细胞。表观遗传调节剂如含溴结构域的BET(溴-和外-末端)蛋白是免疫应答的重要调节剂。临床前研究已经证明BET抑制剂在T1D的NOD(非肥胖糖尿病)小鼠模型中的保护作用。然而,BET蛋白抑制对响应细胞因子的β细胞功能的影响尚不清楚。这里,我们证明了I-BET,一种BET蛋白抑制剂,保护β细胞免受细胞因子诱导的功能障碍和死亡。对暴露于低剂量STZ(链脲佐菌素)的小鼠体内施用I-BET,T1D的模型,显著减少β细胞凋亡,提示细胞保护功能。机械上,I-BET治疗抑制细胞因子诱导的NF-kB信号传导并增强FOXO1介导的β细胞抗氧化反应。RNA-Seq分析显示,I-BET处理还抑制参与细胞凋亡的途径,同时维持β细胞功能关键基因的表达,例如Pdx1和Ins1。一起来看,这项研究表明,I-BET可有效保护β细胞免受细胞因子诱导的功能障碍和凋亡,和靶向BET蛋白可能在保留T1D中的β细胞功能质量方面具有潜在的治疗价值。
    Cytokine-induced β-cell apoptosis is a major pathogenic mechanism in type 1 diabetes (T1D). Despite significant advances in understanding its underlying mechanisms, few drugs have been translated to protect β-cells in T1D. Epigenetic modulators such as bromodomain-containing BET (bromo- and extra-terminal) proteins are important regulators of immune responses. Pre-clinical studies have demonstrated a protective effect of BET inhibitors in an NOD (non-obese diabetes) mouse model of T1D. However, the effect of BET protein inhibition on β-cell function in response to cytokines is unknown. Here, we demonstrate that I-BET, a BET protein inhibitor, protected β-cells from cytokine-induced dysfunction and death. In vivo administration of I-BET to mice exposed to low-dose STZ (streptozotocin), a model of T1D, significantly reduced β-cell apoptosis, suggesting a cytoprotective function. Mechanistically, I-BET treatment inhibited cytokine-induced NF-kB signaling and enhanced FOXO1-mediated anti-oxidant response in β-cells. RNA-Seq analysis revealed that I-BET treatment also suppressed pathways involved in apoptosis while maintaining the expression of genes critical for β-cell function, such as Pdx1 and Ins1. Taken together, this study demonstrates that I-BET is effective in protecting β-cells from cytokine-induced dysfunction and apoptosis, and targeting BET proteins could have potential therapeutic value in preserving β-cell functional mass in T1D.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    糖尿病的发病机制涉及胰岛细胞内mRNA和非编码RNA表达谱的复杂变化。诱导多能干细胞(iPSC)技术的最新进展使糖尿病相关基因的建模成为可能。我们最近使用FOXA2缺陷的人类iPSC模型进行的研究强调了FOXA2在人类胰腺发育中的重要作用。这里,我们旨在通过研究缺乏FOXA2基因的iPSC来源的胰岛中的miRNA-mRNA调控网络,为microRNAs(miRNAs)的作用提供进一步的见解.与我们之前的发现一致,缺乏FOXA2显著下调胰岛激素的表达,INS,还有GCG,与胰岛中的其他关键发育基因一起。和谐地,RNA-Seq分析显示,与胰腺发育相关的基因显著下调,与神经系统发育和脂质代谢途径相关的基因上调。此外,iPSC来源的胰岛中FOXA2的缺失导致miRNA表达的显著改变,61个miRNA上调,99个miRNA下调。上调的miRNA靶向参与糖尿病和胰岛细胞发育的关键基因。相反,胰岛中FOXA2的缺失显示了一个下调的miRNA网络,这些miRNA靶向与神经系统发育和脂质代谢相关的基因。这些发现强调了FOXA2缺失对胰岛发育的影响,并提示了影响胰岛细胞发育的复杂miRNA-mRNA调控网络。
    The pathogenesis of diabetes involves complex changes in the expression profiles of mRNA and non-coding RNAs within pancreatic islet cells. Recent progress in induced pluripotent stem cell (iPSC) technology have allowed the modeling of diabetes-associated genes. Our recent study using FOXA2-deficient human iPSC models has highlighted an essential role for FOXA2 in the development of human pancreas. Here, we aimed to provide further insights on the role of microRNAs (miRNAs) by studying the miRNA-mRNA regulatory networks in iPSC-derived islets lacking the FOXA2 gene. Consistent with our previous findings, the absence of FOXA2 significantly downregulated the expression of islet hormones, INS, and GCG, alongside other key developmental genes in pancreatic islets. Concordantly, RNA-Seq analysis showed significant downregulation of genes related to pancreatic development and upregulation of genes associated with nervous system development and lipid metabolic pathways. Furthermore, the absence of FOXA2 in iPSC-derived pancreatic islets resulted in significant alterations in miRNA expression, with 61 miRNAs upregulated and 99 downregulated. The upregulated miRNAs targeted crucial genes involved in diabetes and pancreatic islet cell development. In contrary, the absence of FOXA2 in islets showed a network of downregulated miRNAs targeting genes related to nervous system development and lipid metabolism. These findings highlight the impact of FOXA2 absence on pancreatic islet development and suggesting intricate miRNA-mRNA regulatory networks affecting pancreatic islet cell development.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    这项研究揭示了维拉帕米在糖尿病应激源中对胰腺β细胞的引人注目的细胞保护和增殖作用,突出其在增加胆囊收缩素(CCK)表达中的不可预见的作用。通过在1型和2型糖尿病条件下使用MIN6β细胞和斑马鱼模型的严格研究,我们证明了维拉帕米显著促进β细胞增殖的能力,增强葡萄糖刺激的胰岛素分泌,增强细胞弹性。我们研究的一个重要启示是维拉帕米诱导CCK,一种肽激素,以其在营养消化和胰岛素分泌中的作用而闻名,这标志着维拉帕米发挥其治疗作用的新途径。此外,我们的机制见解表明,维拉帕米协调广谱的基因和蛋白质表达对于β细胞存活和适应免疫代谢挑战至关重要.斑马鱼幼虫模型的体内验证证实了维拉帕米在甲硝唑后促进β细胞恢复的功效。总的来说,我们的发现提倡维拉帕米作为糖尿病治疗的多方面药物的重新评估,强调其在CCK上调中的新功能,同时增强β细胞增殖,葡萄糖传感,和氧化呼吸。这项研究丰富了治疗领域,提出维拉帕米不仅作为细胞保护剂,而且作为β细胞再生的启动子,从而为旨在保持和增强β细胞功能的糖尿病管理策略提供了新的途径。
    This study unveils verapamil\'s compelling cytoprotective and proliferative effects on pancreatic β-cells amidst diabetic stressors, spotlighting its unforeseen role in augmenting cholecystokinin (CCK) expression. Through rigorous investigations employing MIN6 β-cells and zebrafish models under type 1 and type 2 diabetic conditions, we demonstrate verapamil\'s capacity to significantly boost β-cell proliferation, enhance glucose-stimulated insulin secretion, and fortify cellular resilience. A pivotal revelation of our research is verapamil\'s induction of CCK, a peptide hormone known for its role in nutrient digestion and insulin secretion, which signifies a novel pathway through which verapamil exerts its therapeutic effects. Furthermore, our mechanistic insights reveal that verapamil orchestrates a broad spectrum of gene and protein expressions pivotal for β-cell survival and adaptation to immune-metabolic challenges. In vivo validation in a zebrafish larvae model confirms verapamil\'s efficacy in fostering β-cell recovery post-metronidazole infliction. Collectively, our findings advocate for verapamil\'s reevaluation as a multifaceted agent in diabetes therapy, highlighting its novel function in CCK upregulation alongside enhancing β-cell proliferation, glucose sensing, and oxidative respiration. This research enriches the therapeutic landscape, proposing verapamil not only as a cytoprotector but also as a promoter of β-cell regeneration, thereby offering fresh avenues for diabetes management strategies aimed at preserving and augmenting β-cell functionality.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    糖尿病(DM)是一种全球性的健康负担,其特征是胰腺β细胞的损失或功能障碍。在胰腺β细胞中,内质网(ER)应激是导致β细胞丢失或功能障碍的生命事实。尽管最近的研究取得了进展,现有的治疗方法,如改变生活方式和使用常规治疗方法,无法预防胰腺β细胞的丢失或功能障碍,从而阻止疾病进展.因此,靶向ER应激和随后的胰腺β细胞未折叠蛋白反应(UPR)可能是糖尿病治疗的潜在治疗策略.膳食植物化学物质由于其广泛的生化和药理活性而在人类健康中具有治疗性应用。黄酮类化合物,它们通常从世界各地的水果和蔬菜中获得,在缓解ER压力方面显示出了有希望的前景。膳食类黄酮,包括槲皮素,山奈酚,杨梅素,异鼠李素,Fisetin,淫羊藿苷,芹菜素,apigetrin,vitexin,黄芩素,黄芩苷,金黄素橙皮苷,柚皮苷,表没食子儿茶素3-O-没食子酸橙皮苷(EGCG),tectoriginin,甘草素,和刺槐素对胰腺β细胞内质网应激有抑制作用。膳食类黄酮调节内质网应激信号成分,伴侣蛋白质,转录因子,氧化应激,自噬,凋亡,和炎症反应,以发挥其对胰腺β细胞内质网应激的药理作用。本文综述了膳食类黄酮作为潜在的治疗佐剂在保护胰腺β细胞免受内质网应激中的作用。还介绍了潜在作用机制的重点以及DM管理中临床翻译的可能策略。
    Diabetes mellitus (DM) is a global health burden that is characterized by the loss or dysfunction of pancreatic β-cells. In pancreatic β-cells, endoplasmic reticulum (ER) stress is a fact of life that contributes to β-cell loss or dysfunction. Despite recent advances in research, the existing treatment approaches such as lifestyle modification and use of conventional therapeutics could not prevent the loss or dysfunction of pancreatic β-cells to abrogate the disease progression. Therefore, targeting ER stress and the consequent unfolded protein response (UPR) in pancreatic β-cells may be a potential therapeutic strategy for diabetes treatment. Dietary phytochemicals have therapeutic applications in human health owing to their broad spectrum of biochemical and pharmacological activities. Flavonoids, which are commonly obtained from fruits and vegetables worldwide, have shown promising prospects in alleviating ER stress. Dietary flavonoids including quercetin, kaempferol, myricetin, isorhamnetin, fisetin, icariin, apigenin, apigetrin, vitexin, baicalein, baicalin, nobiletin hesperidin, naringenin, epigallocatechin 3-O-gallate hesperidin (EGCG), tectorigenin, liquiritigenin, and acacetin have shown inhibitory effects on ER stress in pancreatic β-cells. Dietary flavonoids modulate ER stress signaling components, chaperone proteins, transcription factors, oxidative stress, autophagy, apoptosis, and inflammatory responses to exert their pharmacological effects on pancreatic β-cells ER stress. This review focuses on the role of dietary flavonoids as potential therapeutic adjuvants in preserving pancreatic β-cells from ER stress. Highlights of the underlying mechanisms of action are also presented as well as possible strategies for clinical translation in the management of DM.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    流行病学研究始终将环境毒物暴露与2型糖尿病风险增加联系起来。我们的研究调查了广泛使用的阻燃剂,DechloranePlus(DP),使用啮齿动物和人体模型系统的胰腺β细胞。我们首先检查了雄性小鼠的胰腺组织,该小鼠每天口服给药赋形剂(玉米油)或DP(每天10、100或1000μg/kg),并在体内喂食食物或高脂肪饮食28天。在任一饮食组中,DP暴露均不影响胰岛大小或内分泌细胞组成。接下来,我们使用永生化大鼠β细胞(INS-1832/3)评估了在体外暴露于媒介物(DMSO)或DP(1、10或100nM)48小时的效果,初级小鼠和人类胰岛,和人干细胞衍生的胰岛样细胞(SC-胰岛)。在INS-1832/3细胞中,DP不会影响葡萄糖刺激的胰岛素分泌(GSIS),但会显着降低细胞内胰岛素含量。DP对小鼠胰岛或SC-胰岛中的GSIS没有影响,但对人胰岛中的GSIS有不同的影响,具体取决于供体。单独的DP不影响小鼠胰岛中的胰岛素含量,人类胰岛,或SC-胰岛,但是与对照条件相比,共同暴露于DP和糖脂毒性(GLT)应激条件(28.7mM葡萄糖0.5mM棕榈酸酯)的小鼠胰岛胰岛素含量降低。与单独的GLT相比,小鼠胰岛共同暴露于DP+GLT放大了Slc30a8的上调。我们的研究强调了使用不同的体外模型研究化学毒性的重要性和挑战。
    Epidemiological studies consistently link environmental toxicant exposure with increased Type 2 diabetes risk. Our study investigated the diabetogenic effects of a widely used flame retardant, Dechlorane Plus (DP), on pancreatic β-cells using rodent and human model systems. We first examined pancreas tissues from male mice exposed daily to oral gavage of either vehicle (corn oil) or DP (10, 100, or 1000 μg/kg per day) and fed chow or high fat diet for 28-days in vivo. DP exposure did not affect islet size or endocrine cell composition in either diet group. Next, we assessed the effect of 48-hour exposure to vehicle (DMSO) or DP (1, 10, or 100 nM) in vitro using immortalized rat β-cells (INS-1 832/3), primary mouse and human islets, and human stem-cell derived islet-like cells (SC-islets). In INS-1 832/3 cells, DP did not impact glucose-stimulated insulin secretion (GSIS) but significantly decreased intracellular insulin content. DP had no effect on GSIS in mouse islets or SC-islets but had variable effects on GSIS in human islets depending on the donor. DP alone did not affect insulin content in mouse islets, human islets, or SC-islets, but mouse islets co-exposed to DP and glucolipotoxic (GLT) stress conditions (28.7 mM glucose + 0.5 mM palmitate) had reduced insulin content compared to control conditions. Co-exposure of mouse islets to DP + GLT amplified the upregulation of Slc30a8 compared to GLT alone. Our study highlights the importance and challenges of using different in vitro models for studying chemical toxicity.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    胰腺β细胞的ATP敏感性K通道(K(ATP)通道)的孔形成Kir6亚基中的功能突变增益是人类新生儿糖尿病的主要原因。在这项研究中,我们表明在分泌胰岛素的小鼠β细胞系中,Kir6.1中的功能增益突变导致显著的连接蛋白36(Cx36)过表达,它们形成缝隙连接并介导胰岛内β细胞之间的电耦合。使用计算建模,我们表明,Cx36的上调可能在β细胞簇的葡萄糖刺激的Ca2振荡的损害中起功能作用,其K(ATP)通道(GoF-K(ATP)通道)具有Kir6.1功能获得突变。我们的结果表明,Cx36表达没有增加,Kir6.1中的功能增加突变可能不足以减少β细胞簇中葡萄糖刺激的Ca2振荡。我们还显示Cx36表达减少,导致野生型β细胞簇失去协调,通过GoF-K(ATP)通道恢复β细胞簇中协调的Ca2振荡。我们的结果表明,在具有GoF-K(ATP)通道的异质β细胞簇中,簇活性与Cx36表达之间存在倒u形非单调关系。这些结果表明,在新生儿糖尿病β细胞模型中,Kir6.1中的功能增益突变导致Cx36过表达,这加剧了葡萄糖刺激的Ca2振荡的损害。
    Gain of function mutations in the pore forming Kir6 subunits of the ATP sensitive K+ channels (K(ATP) channels) of pancreatic β-cells are the major cause of neonatal diabetes in humans. In this study, we show that in insulin secreting mouse β-cell lines, gain of function mutations in Kir6.1 result in a significant connexin36 (Cx36) overexpression, which form gap junctional connections and mediate electrical coupling between β-cells within pancreatic islets. Using computational modeling, we show that upregulation in Cx36 might play a functional role in the impairment of glucose stimulated Ca2+ oscillations in a cluster of β-cells with Kir6.1 gain of function mutations in their K(ATP) channels (GoF-K(ATP) channels). Our results show that without an increase in Cx36 expression, a gain of function mutation in Kir6.1 might not be sufficient to diminish glucose stimulated Ca2+ oscillations in a β-cell cluster. We also show that a reduced Cx36 expression, which leads to loss of coordination in a wild-type β-cell cluster, restores coordinated Ca2+ oscillations in a β-cell cluster with GoF-K(ATP) channels. Our results indicate that in a heterogenous β-cell cluster with GoF-K(ATP) channels, there is an inverted u-shaped nonmonotonic relation between the cluster activity and Cx36 expression. These results show that in a neonatal diabetic β-cell model, gain of function mutations in the Kir6.1 cause Cx36 overexpression, which aggravates the impairment of glucose stimulated Ca2+ oscillations.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    1型糖尿病(T1DM)的病因是一个复杂的多因素过程,涉及复杂的遗传网络,表观遗传,免疫学,和环境因素。尽管近年来取得了进展,引发该疾病的机制的某些方面仍不清楚.某些病毒感染已被认为是自身免疫过程的可能环境触发因素,导致胰腺β细胞的选择性和进行性破坏以及胰岛素产生不足。这是它的标志。在这次审查中,描述了表明某些病毒参与疾病起始和进展机制的知识和证据的进展。人们已经接受了环境因素,包括病毒,可以启动并可能维持,加速,或减慢自身免疫过程,从而损害产生胰岛素的胰腺β细胞。虽然这些代理的作用,尤其是人类肠道病毒,已被详尽地研究为最可能触发自身免疫激活,破坏胰岛并导致T1DM,某些疑虑仍然存在。人类和动物的临床流行病学和实验研究提供了一致和越来越多的证据,表明持续的病毒感染,尤其是人类肠道病毒和轮状病毒感染,在遗传上倾向于自身免疫的个体中,与疾病的风险增加有关。
    The etiopathogenesis of type 1 diabetes mellitus (T1DM) is a complex multifactorial process that involves an intricate network of genetic, epigenetic, immunological, and environmental factors. Despite the advances in recent years, some aspects of the mechanisms involved in triggering the disease are still unclear. Infections with certain viruses have been suggested as possible environmental triggers for the autoimmune process that leads to selective and progressive destruction of pancreatic β-cells and insufficiency of insulin production, which is its hallmark. In this review, advances in knowledge and evidence that suggest the participation of certain viruses in the mechanisms of disease initiation and progression are described. It has been accepted that environmental factors, including viruses, can initiate and possibly sustain, accelerate, or slow down the autoimmune process and consequently damage insulin-producing pancreatic β-cells. Although the role of these agents, especially human enteroviruses, has been exhaustively studied as the most likely triggers of the activation of autoimmunity that destroys pancreatic islets and leads to T1DM, certain doubts remain. Clinical epidemiological and experimental studies in humans and animals provide consistent and increasing evidence that persistent viral infections, especially with human enteroviruses and rotavirus infections, are associated with an increased risk of the disease in individuals genetically predisposed to autoimmunity.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    促炎细胞因子与1型和2型糖尿病的胰腺β细胞衰竭有关,并且已知刺激选择性RNA剪接和无义介导的RNA衰变(NMD)成分的表达。这里,我们研究了细胞因子是否调节NMD活性,并鉴定了β细胞靶向的转录同工型.
    在大鼠INS1(832/13)中瞬时表达的基于荧光素酶的NMD报告基因,人来源的EndoC-βH3或分散的人胰岛细胞用于检查促炎细胞因子(Cyt)对NMD活性的影响。NMD两个关键组成部分的功能成败,UPF3B和UPF2用于揭示细胞因子对细胞活力和功能的影响。使用标准技术部署RNA测序和siRNA介导的沉默。
    Cyt减弱产生胰岛素的细胞系和原代人β细胞中的NMD活性。发现这些效应涉及内质网应激并且与UPF3B的下调有关。通过UPF3B过表达(OE)或UPF2沉默实现的NMD活性的增加或减少提高或降低Cyt诱导的细胞死亡,分别,在EndoCβH3细胞中,与胰岛素含量降低或增加有关,分别。未观察到这些操作对葡萄糖刺激的胰岛素分泌的影响。转录组学分析显示,Cyt增加了转录同种型中的选择性剪接(AS)诱导的外显子跳跃,这可以通过UPF2沉默来增强。基因富集分析鉴定了由UPF2沉默调节的转录本,其蛋白质在细胞外基质(ECM)中定位和/或起作用。包括丝氨酸蛋白酶抑制剂SERPINA1/α-1-抗胰蛋白酶,其沉默使β-细胞对细胞毒性敏感。细胞因子通过UPR信号抑制NMD活性,可能充当针对Cyt诱导的NMD组分表达的保护性应答。
    我们的研究结果强调了RNA转换在β细胞对炎症应激反应中的重要作用。
    UNASSIGNED: Proinflammatory cytokines are implicated in pancreatic ß cell failure in type 1 and type 2 diabetes and are known to stimulate alternative RNA splicing and the expression of nonsense-mediated RNA decay (NMD) components. Here, we investigate whether cytokines regulate NMD activity and identify transcript isoforms targeted in ß cells.
    UNASSIGNED: A luciferase-based NMD reporter transiently expressed in rat INS1(832/13), human-derived EndoC-ßH3, or dispersed human islet cells is used to examine the effect of proinflammatory cytokines (Cyt) on NMD activity. The gain- or loss-of-function of two key NMD components, UPF3B and UPF2, is used to reveal the effect of cytokines on cell viability and function. RNA-sequencing and siRNA-mediated silencing are deployed using standard techniques.
    UNASSIGNED: Cyt attenuate NMD activity in insulin-producing cell lines and primary human ß cells. These effects are found to involve ER stress and are associated with the downregulation of UPF3B. Increases or decreases in NMD activity achieved by UPF3B overexpression (OE) or UPF2 silencing raise or lower Cyt-induced cell death, respectively, in EndoC-ßH3 cells and are associated with decreased or increased insulin content, respectively. No effects of these manipulations are observed on glucose-stimulated insulin secretion. Transcriptomic analysis reveals that Cyt increases alternative splicing (AS)-induced exon skipping in the transcript isoforms, and this is potentiated by UPF2 silencing. Gene enrichment analysis identifies transcripts regulated by UPF2 silencing whose proteins are localized and/or functional in the extracellular matrix (ECM), including the serine protease inhibitor SERPINA1/α-1-antitrypsin, whose silencing sensitizes ß-cells to Cyt cytotoxicity. Cytokines suppress NMD activity via UPR signaling, potentially serving as a protective response against Cyt-induced NMD component expression.
    UNASSIGNED: Our findings highlight the central importance of RNA turnover in ß cell responses to inflammatory stress.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

公众号