α-galactosidase

α - 半乳糖苷酶
  • 文章类型: Journal Article
    棉子糖族寡糖(RFOs)结构多样,表现出多种生物活性。当使用RFOs作为益生元时,他们的结构需要确定。如果我们首先知道RFO是古典的还是非古典的,结构识别将变得容易得多。这里,我们从脆弱拟杆菌中克隆并表达了α-半乳糖苷酶(BF0224),该酶对水解RFOs中的α-Gal-(1→6)-Gal键具有严格的特异性。BF0224通过用HPAEC-PAD-MS鉴定所得的水解低糖和单糖,有效区分经典和非经典RFO。使用这个策略,我们从具有DP6(称为PHO-6)的太子参(Miquel)Pax中鉴定出一种非经典RFO,以及来自LycopuslucidusTurcz的经典RFO。与DP7(称为LTO-7)。为了表征这些RFO结构,我们使用了其他四种商业或报道的α-半乳糖苷酶,并结合NMR和甲基化分析。使用这种方法,我们阐明了PHO-6和LTO-7的准确化学结构。我们的研究为结构分析RFO提供了一种有效的分析方法。这种基于酶的策略也可以应用于其他聚糖的结构分析。
    Raffinose family oligosaccharides (RFOs) have diverse structures and exhibit various biological activities. When using RFOs as prebiotics, their structures need to be identified. If we first knew whether an RFO was classical or non-classical, structural identification would become much easier. Here, we cloned and expressed an α-galactosidase (BF0224) from Bacteroides fragilis which showed strict specificity for hydrolyzing α-Gal-(1 → 6)-Gal linkages in RFOs. BF0224 efficiently distinguished classical from non-classical RFOs by identifying the resulting hydrolyzed oligo- and mono-saccharides with HPAEC-PAD-MS. Using this strategy, we identified a non-classical RFO from Pseudostellaria heterophylla (Miquel) Pax with DP6 (termed PHO-6), as well as a classical RFO from Lycopus lucidus Turcz. with DP7 (termed LTO-7). To characterize these RFO structures, we employed four other commercial or reported α-galactosidases in combination with NMR and methylation analysis. Using this approach, we elucidated the accurate chemical structure of PHO-6 and LTO-7. Our study provides an efficient analytical approach to structurally analyze RFOs. This enzyme-based strategy also can be applied to structural analysis of other glycans.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    为了克服不兼容问题并增加输血的可能性,需要能够将A型和B型红细胞有效转化为通用供体O型的技术。尽管已经鉴定出几种血型转换酶,对其分子功能的详细了解是有限的。来自两歧双歧杆菌JCM1254(AgaBb)的α-半乳糖苷酶,属于糖苷水解酶(GH)110亚家族A,特异性作用于血型B抗原。这里我们介绍AgaBb的晶体结构,包括催化GH110结构域和部分C末端未表征区域。基于这种结构,我们推测了血型B抗原与活性位点的可能结合机制。定点诱变证实R270和E380识别B抗原中的岩藻糖部分。热移位分析显示,C-末端未表征区域显著有助于蛋白质稳定性。该区域仅在来自双歧杆菌和一些Ruminococus物种的GH110酶中共享。对血型B抗原特异性识别的分子基础的阐明,有望导致未来血型转换酶的实际应用。
    To overcome incompatibility issues and increase the possibility of blood transfusion, technologies that enable efficient conversion of A- and B-type red blood cells to the universal donor O-type is desirable. Although several blood type-converting enzymes have been identified, detailed understanding about their molecular functions is limited. α-Galactosidase from Bifidobacterium bifidum JCM 1254 (AgaBb), belonging to glycoside hydrolase (GH) 110 subfamily A, specifically acts on blood group B antigen. Here we present the crystal structure of AgaBb, including the catalytic GH110 domain and part of the C-terminal uncharacterized regions. Based on this structure, we deduced a possible binding mechanism of blood group B antigen to the active site. Site-directed mutagenesis confirmed that R270 and E380 recognize the fucose moiety in the B antigen. Thermal shift assay revealed that the C-terminal uncharacterized region significantly contributes to protein stability. This region is shared only among GH110 enzymes from B. bifidum and some Ruminococcus species. The elucidation of the molecular basis for the specific recognition of blood group B antigen is expected to lead to the practical application of blood group conversion enzymes in the future.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    该研究调查了主要具有α-半乳糖苷酶活性的酶制剂对改善劣质甜菜中白糖质量的功效。专注于克服甜菜中棉子糖积累的挑战,尤其是那些过早收获或长时间储存的,首次对酶在工业环境中的应用进行了创新探索。通过整合理论计算和实验数据,结果表明,α-半乳糖苷酶制剂显著降低了甜菜汁中棉子糖的含量,从而提高蔗糖产量和整体糖质量。一种可靠的方法来处理低质量的甜菜,有望提高糖生产效率,被介绍了。该研究还强调了将酶制剂纳入生产过程的经济效益,展示了显着的投资回报,并强调了酶处理应对行业挑战的潜力。
    The study investigates the efficacy of an enzymatic preparation primarily with α-galactosidase activity for improving the quality of white sugar from poor-quality sugar beets. Focused on overcoming raffinose accumulation challenges in sugar beets, especially those harvested prematurely or stored for extended periods, an innovative exploration of enzymatic application in an industrial setting for the first time was conducted. By integrating theoretical calculations and experimental data, the findings reveal that α-galactosidase preparation notably diminishes raffinose content in beet juice, thus enhancing the sucrose yield and overall sugar quality. A reliable method to process lower-quality beets, promising enhanced efficiency in sugar production, was presented. The study also highlights the economic benefits of incorporating enzyme preparation into the production process, demonstrating a notable return on investment and underscoring the potential of enzymatic treatments to address industry challenges.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    拟杆菌属物种是人类肠道的成功定殖者,并且可以利用宿主难以消化的多种复合多糖和寡糖。要做到这一点,它们使用多糖利用基因座(PULs)编码的酶。虽然最近的工作已经发现了使用某些多糖所需的PULs,拟杆菌如何利用较小的寡糖的研究较少。棉子糖家族寡糖(RFOs)在植物中含量丰富,尤其是豆类,并且由通过1-1,6键与蔗糖(葡萄糖3-1-β-2果糖)部分连接的半乳糖的可变单元组成。以前的工作表明,α-半乳糖苷酶,BT1871是利用拟杆菌属植物中的RFO所必需的。这里,我们确定了两种不同类型的突变,它们增加了BT1871mRNA水平并改善了RFO上的B.thetaiotaomicron生长。首先,BT1872和BT1871的新自发复制将这些基因置于核糖体启动子的控制之下,驱动高BT1871转录。第二,编码PUL24抗sigma因子的基因中的无义突变同样增加BT1871转录。然后,我们表明来自PUL22的水解酶与BT1871一起分解RFO的蔗糖部分,并确定碳水化合物利用的主要调节剂(BT4338)在B.thetaiotaomicron的RFO利用中起作用。检查其他拟杆菌物种的基因组,我们发现了BT1871的同系物,并表明含有BT1871同系物的物种的代表性菌株在蜜糖上的生长比缺乏BT1871同系物的物种更好。总之,我们的发现揭示了重要的肠道共生物质如何利用丰富的膳食寡糖。
    肠道微生物群对健康和疾病很重要。肠道的多样化和人口稠密的环境使资源竞争变得激烈。因此,研究微生物用于资源利用的策略很重要。棉子糖家族寡糖在植物中是丰富的,并且是肠道微生物群的主要营养来源,因为它们保持不被宿主消化。这里,我们研究模型肠道是如何共生的,拟杆菌利用棉子糖家族寡糖。这项工作突出了微生物群的重要成员如何利用丰富的饮食资源。
    Bacteroides species are successful colonizers of the human gut and can utilize a wide variety of complex polysaccharides and oligosaccharides that are indigestible by the host. To do this, they use enzymes encoded in Polysaccharide Utilization Loci (PULs). While recent work has uncovered the PULs required for use of some polysaccharides, how Bacteroides utilize smaller oligosaccharides is less well studied. Raffinose family oligosaccharides (RFOs) are abundant in plants, especially legumes, and consist of variable units of galactose linked by α-1,6 bonds to a sucrose (glucose α-1-β-2 fructose) moiety. Previous work showed that an α-galactosidase, BT1871, is required for RFO utilization in Bacteroides thetaiotaomicron. Here, we identify two different types of mutations that increase BT1871 mRNA levels and improve B. thetaiotaomicron growth on RFOs. First, a novel spontaneous duplication of BT1872 and BT1871 places these genes under control of a ribosomal promoter, driving high BT1871 transcription. Second, nonsense mutations in a gene encoding the PUL24 anti-sigma factor likewise increase BT1871 transcription. We then show that hydrolases from PUL22 work together with BT1871 to break down the sucrose moiety of RFOs and determine that the master regulator of carbohydrate utilization (BT4338) plays a role in RFO utilization in B. thetaiotaomicron. Examining the genomes of other Bacteroides species, we found homologs of BT1871 in subset and show that representative strains of species containing a BT1871 homolog grew better on melibiose than species that lack a BT1871 homolog. Altogether, our findings shed light on how an important gut commensal utilizes an abundant dietary oligosaccharide.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    α-半乳糖苷酶(α-GAL)是一类从低聚半乳糖和合成底物如pNPG释放半乳糖的水解酶。在这项研究中,通过使用统计方法,可以提高液态发酵中utahensisB1放线菌的α-GAL产量。温度的影响,pH值,使用RSM的BBD优化酶分泌的接种百分比。使用基于KLa的放大策略将优化的方法从摇瓶放大至实验室规模(5L)和中试规模(30L)。通过使用BBD,在28°C的温度下获得62.5U/mL的最大产量,pH值为6.9,接种物为6.4%。在实验室规模和中试规模的发酵罐中,成功进行了放大,产量为74.4U/mL和76.8U/mL。进行TOST以验证放大策略,结果显示两个量表的置信水平为95%,表明放大程序的完美执行。通过实施BBD和扩大规模战略,总酶产量已显著提高到76%。这是第一篇探索从UtahensisB1菌株中放大α-GAL并为工业应用提供有价值的见解的文章。
    α-Galactosidase (α-GAL) is a class of hydrolase that releases galactose from galacto-oligosaccharides and synthetic substrates such as pNPG. In this study, the production of α-GAL by Actinoplanes utahensis B1 in submerged fermentation was enhanced by using statistical methods. The effects of temperature, pH, and inoculum percentage on enzyme secretion were optimized using BBD of RSM. The optimized process was scaled up from the shake flask to the laboratory scale (5 L) and to pilot scale (30 L) using KLa based scale-up strategy. By using BBD, a maximum yield of 62.5 U/mL was obtained at a temperature of 28 °C, a pH of 6.9, and an inoculum of 6.4%. Scale-up was performed successfully and achieved a yield of 74.4 U/mL and 76.8 U/mL in laboratory scale and pilot scale fermenters. The TOST was performed to validate the scale-up strategy and the results showed a confidence level of 95% for both scales indicating the perfect execution of scale-up procedure. Through the implementation of BBD and scale-up strategy, the overall enzyme yield has been significantly increased to 76%. This is the first article to explore the scale-up of α-GAL from the A. utahensis B1 strain and provide valuable insights for industrial applications.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    源自动物来源的脱细胞细胞外基质(ECM)的水凝胶由于其出色的细胞相容性和仿生特性而显示出巨大的再生应用潜力。尽管有这些好处,脱细胞方案对这些水凝胶的性质和免疫原性的影响仍未被探索。在这项研究中,猪骨骼肌ECM(smECM)使用机械破碎(MD)和两种常用的脱细胞去污剂进行脱细胞,脱氧胆酸钠(SDC)或TritonX-100。为了减轻与动物源性ECM相关的免疫原性,用α-半乳糖苷酶对所有脱细胞的组织进行酶处理以裂解主要的异种抗原-α-Gal抗原。随后,彻底研究了不同脱细胞方案对所得水凝胶的影响。所有方法均显著降低水凝胶中的总DNA含量。此外,α-半乳糖苷酶处理对于切割α-Gal抗原至关重要,这表明传统的去细胞方法是不够的。MD保存的总蛋白,胶原蛋白,硫酸化糖胺聚糖,层粘连蛋白,纤连蛋白,和生长因子比其他方案更有效。脱细胞方法影响了水凝胶的凝胶化动力学和超微结构,如浊度和扫描电子显微镜分析所证实。MD水凝胶表现出高度的细胞相容性,支持卫星干细胞募集,增长,分化为多核肌纤维。相比之下,SDC和TritonX-100方案表现出细胞毒性。皮下异种移植模型中的全面体内免疫原性评估显示MD水凝胶的生物相容性和低免疫原性。这些发现突出了去细胞化方案对水凝胶性质的显著影响。我们的结果表明,将MD与α-半乳糖苷酶处理相结合是制备具有增强骨骼肌再生工程和临床应用特性的低免疫原性smECM衍生水凝胶的有效方法。
    Hydrogels derived from decellularized extracellular matrices (ECM) of animal origin show immense potential for regenerative applications due to their excellent cytocompatibility and biomimetic properties. Despite these benefits, the impact of decellularization protocols on the properties and immunogenicity of these hydrogels remains relatively unexplored. In this study, porcine skeletal muscle ECM (smECM) underwent decellularization using mechanical disruption (MD) and two commonly employed decellularization detergents, sodium deoxycholate (SDC) or Triton X-100. To mitigate immunogenicity associated with animal-derived ECM, all decellularized tissues were enzymatically treated with α-galactosidase to cleave the primary xenoantigen-the α-Gal antigen. Subsequently, the impact of the different decellularization protocols on the resultant hydrogels was thoroughly investigated. All methods significantly reduced total DNA content in hydrogels. Moreover, α-galactosidase treatment was crucial for cleaving α-Gal antigens, suggesting that conventional decellularization methods alone are insufficient. MD preserved total protein, collagen, sulfated glycosaminoglycan, laminin, fibronectin, and growth factors more efficiently than other protocols. The decellularization method impacted hydrogel gelation kinetics and ultrastructure, as confirmed by turbidimetric and scanning electron microscopy analyses. MD hydrogels demonstrated high cytocompatibility, supporting satellite stem cell recruitment, growth, and differentiation into multinucleated myofibers. In contrast, the SDC and Triton X-100 protocols exhibited cytotoxicity. Comprehensive in vivo immunogenicity assessments in a subcutaneous xenotransplantation model revealed MD hydrogels\' biocompatibility and low immunogenicity. These findings highlight the significant influence of the decellularization protocol on hydrogel properties. Our results suggest that combining MD with α-galactosidase treatment is an efficient method for preparing low-immunogenic smECM-derived hydrogels with enhanced properties for skeletal muscle regenerative engineering and clinical applications.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    Floridoside是一种半乳糖基甘油化合物,可提供UDP-半乳糖,并在红藻中响应盐度时充当有机渗透压。重要的是,UDP-半乳糖池用于硫酸化细胞壁半乳聚糖合成,and,反过来,受叶状体发育以及挥发性生长调节剂诱导的孢子形成的影响,如乙烯和茉莉酸甲酯,在红海藻中。在这项研究中,我们通过基因表达控制半乳糖池和甘油酯池,在不同的繁殖阶段监测了氟菊酯储层的变化,并考虑了盐度条件的变化。由于UDP-半乳糖是从UDP-葡萄糖和葡萄糖-1P获得的,因此在合成了Floridoside之后进行了半乳糖-1-磷酸尿苷转移酶(GALT)的表达分析,并通过α-半乳糖苷酶基因表达,因为氟糖苷的降解是通过半乳糖残基的裂解而发生的。同时,甘油3-磷酸通过甘油3-磷酸脱氢酶(G3PD)与半乳糖甘油酯生物合成途径相连,单半乳糖二酰甘油酯合酶(MGDGS),和二半乳糖基二酰基甘油酯合酶(DGDGS)。我们的研究结果证实,低GALT转录本与定位生殖结构的thalli柔软度相关,以及在两种挥发性调节剂和甲硫氨酸存在下限制UDP-己糖的合成用于半乳聚糖主链合成。同时,α-半乳糖苷酶根据果壳成熟调节表达,我们在发展后期发现了高转录本,就像茉莉酸甲酯存在时发生的,与乙烯的早期阶段相比。关于酰基甘油酯池,G3PD的上调,MGGGS,和DGDGS基因表达在G.imbricata用MEJA处理支持脂质重塑,由于MGDGS和DGDGS的高水平转录物在囊果的晚期发育阶段提供膜稳定性。在三个自然收集的thalli发展阶段假设类似的行为-即,肥沃的,施肥,和肥沃-低于65psu盐度条件。在不育和受精的thalli中报道了α-半乳糖苷酶的低转录本和G3PD的高转录本,与35psu中的每个相应阶段相比,这与α-半乳糖苷酶的高转录本相反,而在可见囊果内的可育thalli中遇到的G3PD低。MGDGS和DGDGS没有报告显著变化。结论是,壳果和thallus发育阶段会影响半乳糖和甘油酯库,并对细胞壁多糖产生交织作用。
    Floridoside is a galactosyl-glycerol compound that acts to supply UDP-galactose and functions as an organic osmolyte in response to salinity in Rhodophyta. Significantly, the UDP-galactose pool is shared for sulfated cell wall galactan synthesis, and, in turn, affected by thallus development alongside carposporogenesis induced by volatile growth regulators, such as ethylene and methyl jasmonate, in the red seaweed Grateloupia imbricata. In this study, we monitored changes in the floridoside reservoir through gene expression controlling both the galactose pool and glyceride pool under different reproductive stages of G. imbricata and we considered changing salinity conditions. Floridoside synthesis was followed by expression analysis of galactose-1-phosphate uridyltransferase (GALT) as UDP-galactose is obtained from UDP-glucose and glucose-1P, and through α-galactosidase gene expression as degradation of floridoside occurs through the cleavage of galactosyl residues. Meanwhile, glycerol 3-phosphate is connected with the galactoglyceride biosynthetic pathway by glycerol 3-phosphate dehydrogenase (G3PD), monogalactosyl diacylglyceride synthase (MGDGS), and digalactosyl diacylglyceride synthase (DGDGS). The results of our study confirm that low GALT transcripts are correlated with thalli softness to locate reproductive structures, as well as constricting the synthesis of UDP-hexoses for galactan backbone synthesis in the presence of two volatile regulators and methionine. Meanwhile, α-galactosidase modulates expression according to cystocarp maturation, and we found high transcripts in late development stages, as occurred in the presence of methyljasmonate, compared to early stages in ethylene. Regarding the acylglyceride pool, the upregulation of G3PD, MGDGS, and DGDGS gene expression in G. imbricata treated with MEJA supports lipid remodeling, as high levels of transcripts for MGDGS and DGDGS provide membrane stability during late development stages of cystocarps. Similar behavior is assumed in three naturally collected thalli development stages-namely, fertile, fertilized, and fertile-under 65 psu salinity conditions. Low transcripts for α-galactosidase and high for G3PD are reported in infertile and fertilized thalli, which is the opposite to high transcripts for α-galactosidase and low for G3PD encountered in fertile thalli within visible cystocarps compared to each of their corresponding stages in 35 psu. No significant changes are reported for MGDGS and DGDGS. It is concluded that cystocarp and thallus development stages affect galactose and glycerides pools with interwoven effects on cell wall polysaccharides.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    α-半乳糖苷酶是一种重要的外切糖苷酶,属于水解酶类,具有治疗和工业潜力。它在水解α-1,6连接的末端半乳寡糖残基(如蜜二糖)中起着至关重要的作用,棉子糖,和分枝多糖如半乳葡甘露聚糖和半乳甘露聚糖。在这项研究中,开发了用于生产α-半乳糖苷酶的utahensisB1放线菌,产量提高,和通过纯化增强活性。最初,使用Plackett-Burman设计(PBD)筛选了9种培养基成分。在这些组件中,蔗糖,豆粉,和柠檬酸钠被鉴定为A.UtahensisB1分泌最高酶的最佳支持营养素。稍后,中央复合设计(CCD)的实施微调这些组件的优化。基于顺序统计优化方法,一个重要的,α-半乳糖苷酶产量增加3.64倍,从16到58.37U/mL。通过超滤-I纯化酶,然后进行多模式色谱和超滤-II。通过十二烷基硫酸钠-聚丙烯酰胺琼脂糖凝胶电泳(SDS-PAGE)证实酶的纯度,其显示具有约72kDa分子量的单个独特条带。此外,确定该方法导致纯度增加2.03倍。纯化的α-半乳糖苷酶显示出2304U/mL的活性,比活性为288U/mg。这项研究证明了utahensisB1放线菌的分离以及α-半乳糖苷酶生产过程的优化以及一步纯化。
    α-Galactosidase is an important exoglycosidase belonging to the hydrolase class of enzymes, which has therapeutic and industrial potential. It plays a crucial role in hydrolyzing α-1,6 linked terminal galacto-oligosaccharide residues such as melibiose, raffinose, and branched polysaccharides such as galacto-glucomannans and galactomannans. In this study, Actinoplanes utahensis B1 was explored for α-galactosidase production, yield improvement, and activity enhancement by purification. Initially, nine media components were screened using the Plackett-Burman design (PBD). Among these components, sucrose, soya bean flour, and sodium glutamate were identified as the best-supporting nutrients for the highest enzyme secretion by A. Utahensis B1. Later, the Central Composite Design (CCD) was implemented to fine-tune the optimization of these components. Based on sequential statistical optimization methodologies, a significant, 3.64-fold increase in α-galactosidase production, from 16 to 58.37 U/mL was achieved. The enzyme was purified by ultrafiltration-I followed by multimode chromatography and ultrafiltration-II. The purity of the enzyme was confirmed by Sodium Dodecyl Sulphate-Polyacrylamide Agarose Gel Electrophoresis (SDS-PAGE) which revealed a single distinctive band with a molecular weight of approximately 72 kDa. Additionally, it was determined that this process resulted in a 2.03-fold increase in purity. The purified α-galactosidase showed an activity of 2304 U/mL with a specific activity of 288 U/mg. This study demonstrates the isolation of Actinoplanes utahensis B1 and optimization of the process for the α-galactosidase production as well as single-step purification.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    酶α-半乳糖苷酶(α-D-半乳糖苷半乳糖水解酶[EC3.2.1.22])是水解糖脂和糖蛋白的末端α-半乳糖基部分的外切糖苷酶。它在自然界中普遍存在,在食品中有着广泛的应用,制药,和生物技术产业。本研究旨在从肺炎克雷伯菌中纯化α-半乳糖苷酶,从人类口腔中分离出的细菌。纯化步骤涉及硫酸铵沉淀(70%),透析,使用DEAE-纤维素柱的离子交换色谱法,和亲和整体色谱。十二烷基硫酸钠-聚丙烯酰胺凝胶电泳(SDS-PAGE)分析用于确定纯化酶的分子量。动力学常数,米氏常数(Km)和最大速度(Vmax),通过使用对硝基苯基-α-D-吡喃半乳糖苷作为底物测定该酶。结果表明,纯化倍数,具体活动,产量分别为126.52、138.58单位/mg,和21.5%,分别。SDS-PAGE显示纯化酶的分子量为75kDa。在pH6.0和50°C下检测到纯化的α-半乳糖苷酶的最佳pH和温度,分别。动力学常数,米氏常数(Km)和最大速度(Vmax),该酶为4.6mM和769.23U/ml,分别。从肺炎克雷伯菌中纯化并鉴定α-半乳糖苷酶。(SDS-PAGE)分析表明,纯化的酶表现为分子量为75kDa的单条带。
    The enzyme α-Galactosidase (α-D-galactoside galactohydrolase [EC 3.2.1.22]) is an exoglycosidase that hydrolyzes the terminal α-galactosyl moieties of glycolipids and glycoproteins. It is ubiquitous in nature and possesses extensive applications in the food, pharma, and biotechnology industries. The present study aimed to purify α-galactosidase from Klebsiella pneumoniae, a bacterium isolated from the human oral cavity. The purification steps involved ammonium sulfate precipitation (70 %), dialysis, ion exchange chromatography using a DEAE-cellulose column, and affinity monolith chromatography. The sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) analysis was used to determine the molecular weight of the purified enzyme. The kinetic constants, Michaelis constant (Km) and maximal velocity (Vmax), for this enzyme were determined by using p-nitrophenyl-α-D-galactopyranoside as substrate. The results showed that the purification fold, specific activity, and yield were 126.52, 138.58 units/mg, and 21.5 %, respectively. The SDS-PAGE showed that the molecular weight of the purified enzyme was 75 kDa. The optimum pH and temperature of the purified α-galactosidase were detected at pH 6.0 and 50 °C, respectively. The kinetic constants, Michaelis constant (Km) and maximal velocity (Vmax), for this enzyme were 4.6 mM and 769.23 U/ml, respectively. α-galactosidase from Klebsiella pneumoniae was purified and characterized. (SDS-PAGE) analysis showed that the purified enzyme appeared as single band with a molecular weight of 75 kDa.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Case Reports
    Fabry-Andersen disease is a genetically determined, progressive disease related to lysosomal storage diseases, linked to the X chromosome, characterized by impaired glycosphingolipid metabolism, due to the deficiency or absence of the enzyme α-galactosidase A. Fabry disease is a multisystem disease and is characterized by damage to vital organs - kidneys, heart, brain, with the occurrence of complications that cause an unfavorable prognosis. Autoinflammation mechanisms with signs of chronic inflammation are involved in the pathogenesis of the disease. One of the features of Fabry disease are clinical manifestations in the form of arthralgia, fever, skin lesions, which are similar to rheumatological diseases. The article presents a clinical observation of the classical type of Fabry disease with multiple organ manifestation, which required differential diagnosis with rheumatological diseases. Rheumatologists are specialists who are involved in the early diagnosis of Fabry disease, so they should have a high awareness of this sphingolipidosis.
    Болезнь Фабри–Андерсена – генетически обусловленное прогрессирующее заболевание, относящееся к лизосомальным болезням накопления, сцепленное с Х-хромосомой, характеризуется нарушением обмена гликосфинголипидов вследствие недостаточности или отсутствия фермента α-галактозидазы А. Болезнь Фабри является мультисистемным заболеванием и характеризуется поражением жизненно важных органов – почек, сердца, головного мозга с возникновением осложнений, вызывающих неблагоприятный прогноз. В патогенезе заболевания участвуют механизмы аутовоспаления с признаками хронического воспаления. Одними из особенностей болезни Фабри являются клинические проявления в виде артралгий, повышения температуры, поражений кожи, которые имитируют ревматологические заболевания. В статье представлено клиническое наблюдение классического варианта болезни Фабри с полиорганной манифестацией, что потребовало дифференциальной диагностики с ревматологическими заболеваниями. Ревматологи – специалисты, вовлеченные в раннюю диагностику болезни Фабри, поэтому они должны иметь высокую осведомленность о данном сфинголипидозе.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

公众号