stereolithography

立体光刻
  • 文章类型: Journal Article
    立体光刻能够通过光诱导聚合制造三维(3D)自由形式结构。然而,被困在负空间中的树脂内的紫外线剂量的积累,例如微流体通道或空隙,可能导致意外关闭,被称为过度固化,这些负空间。我们报告了使用注射连续液体界面生产来连续置换树脂,从而有可能在先前层中使用新鲜树脂产生的负空间中过度固化,以减轻Z轴分辨率的损失。我们证明了分辨50μm微通道的能力,打破了树脂性质与负空间分辨率的历史关系。通过这种方法,我们制造了概念验证3D自由形式微流体设备,在设备材料选择和由此产生的特性方面具有改进的设计自由度。
    Stereolithography enables the fabrication of three-dimensional (3D) freeform structures via light-induced polymerization. However, the accumulation of ultraviolet dose within resin trapped in negative spaces, such as microfluidic channels or voids, can result in the unintended closing, referred to as overcuring, of these negative spaces. We report the use of injection continuous liquid interface production to continuously displace resin at risk of overcuring in negative spaces created in previous layers with fresh resin to mitigate the loss of Z-axis resolution. We demonstrate the ability to resolve 50-μm microchannels, breaking the historical relationship between resin properties and negative space resolution. With this approach, we fabricated proof-of-concept 3D free-form microfluidic devices with improved design freedom over device material selection and resulting properties.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    目标:为了确定构建方向的影响,层厚度增加,和牙齿拥挤对三维(3D)打印模型的真实性,并评估这些参数如何影响热成型器具的配合。
    方法:使用不同的3D打印技术在构建平台上水平和垂直打印了96个牙科模型:(1)立体光刻(SLA)打印机,层厚为160μm和300μm,(2)数字光处理(DLP)打印机,层厚为100μm和200μm。使用3D渲染软件将每个打印模型数字化并叠加在相应的源文件上,和偏差通过均方根值量化。随后,总共32个热成型设备在最精确的3D打印模型上制造,通过数字叠加和三名盲正畸医生的检查来评估它们的适合性。采用配对t检验对数据进行分析。
    结果:对于水平打印的模型,所使用的打印技术之间存在显着差异(P<.05)。随着SLA系统实现更好的真实性,尤其是在拥挤的牙列中。当模型垂直打印时,没有发现技术之间的显着差异。在DLP打印模型之上制造的器具中记录了最高的偏差值。定性评估的结果表明,在SLA模型之上制造的设备优于DLP建模的设备。
    结论:具有增加的层高的三维打印似乎可以为正畸应用产生精确的工作模型。
    OBJECTIVE: To determine the impact of build orientation, increased layer thickness, and dental crowding on the trueness of three-dimensional (3D)-printed models, and to evaluate how these parameters affect the fit of thermoformed appliances.
    METHODS: Ninety-six dental models were printed horizontally and vertically on the building platform using different 3D-printing technologies: (1) a stereolithography (SLA) printer with layer thicknesses of 160 μm and 300 μm and (2) a digital light processing (DLP) printer with layer thicknesses of 100 μm and 200 μm. Each printed model was digitalized and superimposed on the corresponding source file using 3D rendering software, and deviations were quantified by the root mean square values. Subsequently, a total of 32 thermoformed appliances were fabricated on top of the most accurate 3D-printed models, and their fit was evaluated by digital superimposition and inspection by three blinded orthodontists. Paired t-tests were used to analyze the data.
    RESULTS: Significant differences (P < .05) between printing technologies used were identified for models printed horizontally, with the SLA system achieving better trueness, especially in crowded dentitions. No significant differences between technology were found when models were printed vertically. The highest values of deviation were recorded in appliances fabricated on top of DLP-printed models. The results of the qualitative evaluation indicated that appliances fabricated on top of SLA models outperformed the DLP-modeled appliances.
    CONCLUSIONS: Three-dimensional printing with increased layer height seems to produce accurate working models for orthodontic applications.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    癌症是全球死亡的主要原因,需要不断改进诊断和治疗。传统方法往往缺乏敏感性和特异性,导致需要新的方法。3D打印已经成为癌症诊断的变革性工具,提供精确和可定制的纳米传感器的潜力。这些进步在癌症研究中至关重要,旨在提高肿瘤的早期检测和监测。在当前时代,3D打印技术作为一种灵活的介质,用于生产具有出色灵敏度和特异性的精确和适应性纳米传感器。该研究旨在通过使用3D打印技术开发先进的3D打印纳米传感器来增强癌症的早期诊断和预后。该研究探索了各种3D打印技术,设计策略,和癌症特异性生物标志物的功能化策略。这些纳米传感器与荧光等检测模式的集成,电化学,和表面增强拉曼光谱也进行了评估。这项研究探讨了喷墨打印的使用,立体光刻,和熔融沉积建模,以创建具有增强性能的纳米结构。它还讨论了针对癌症指标的设计和功能化方法。3D打印纳米传感器与多种检测方式的集成,包括荧光,电化学,和表面增强拉曼光谱,实现快速可靠的癌症诊断。结果显示提高了对癌症生物标志物的敏感性和特异性,能够早期检测肿瘤指标和循环细胞。该研究强调了3D打印纳米传感器通过实现对肿瘤生物标志物的高灵敏度和特异性检测来改变癌症诊断的潜力。它标志着癌症诊断的关键一步,展示了3D打印技术生产先进纳米传感器的能力,这些传感器可以显着改善早期癌症检测和患者预后。
    Cancer is the leading cause of mortality worldwide, requiring continuous advancements in diagnosis and treatment. Traditional methods often lack sensitivity and specificity, leading to the need for new methods. 3D printing has emerged as a transformative tool in cancer diagnosis, offering the potential for precise and customizable nanosensors. These advancements are critical in cancer research, aiming to improve early detection and monitoring of tumors. In current times, the usage of the 3D printing technique has been more prevalent as a flexible medium for the production of accurate and adaptable nanosensors characterized by exceptional sensitivity and specificity. The study aims to enhance early cancer diagnosis and prognosis by developing advanced 3D-printed nanosensors using 3D printing technology. The research explores various 3D printing techniques, design strategies, and functionalization strategies for cancer-specific biomarkers. The integration of these nanosensors with detection modalities like fluorescence, electrochemical, and surface-enhanced Raman spectroscopy is also evaluated. The study explores the use of inkjet printing, stereolithography, and fused deposition modeling to create nanostructures with enhanced performance. It also discusses the design and functionalization methods for targeting cancer indicators. The integration of 3D-printed nanosensors with multiple detection modalities, including fluorescence, electrochemical, and surface-enhanced Raman spectroscopy, enables rapid and reliable cancer diagnosis. The results show improved sensitivity and specificity for cancer biomarkers, enabling early detection of tumor indicators and circulating cells. The study highlights the potential of 3D-printed nanosensors to transform cancer diagnosis by enabling highly sensitive and specific detection of tumor biomarkers. It signifies a pivotal step forward in cancer diagnostics, showcasing the capacity of 3D printing technology to produce advanced nanosensors that can significantly improve early cancer detection and patient outcomes.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    我们使用立体光刻技术在商业光固化印刷树脂DS3000和PEGDA-250中印刷刺激响应自旋交叉材料的聚合物纳米复合材料样品。SLA打印物体的热机械分析不仅揭示了通过引入较硬的SCO颗粒对聚合物树脂的预期增强,而且还有一个重要的机械阻尼,以及围绕自旋转变温度的相当大的线性应变。对于最高的可访问负载(约13-15卷。%)我们测量的转化菌株在1.2-1.5%的范围内,热膨胀系数的峰值高达10-3°C-1,这在3D打印双层致动器中被利用以产生弯曲运动。结果为将这些先进的刺激响应复合材料集成到机械致动器和4D打印应用中铺平了道路。
    We used stereolithography to print polymer nanocomposite samples of stimuli-responsive spin crossover materials in the commercial photo-curable printing resins DS3000 and PEGDA-250. The thermomechanical analysis of the SLA-printed objects revealed not only the expected reinforcement of the polymer resins by the introduction of the stiffer SCO particles, but also a significant mechanical damping, as well as a sizeable linear strain around the spin transition temperatures. For the highest accessible loads (ca. 13-15 vol.%) we measured transformation strains in the range of 1.2-1.5%, giving rise to peaks in the coefficient of thermal expansion as high as 10-3 °C-1, which was exploited in 3D printed bilayer actuators to produce bending movement. The results pave the way for integrating these advanced stimuli-responsive composites into mechanical actuators and 4D printing applications.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    三维(3D)支架提供细胞支持,同时通过植入材料和天然组织之间的放大的细胞反应来改善组织再生。到目前为止,高传导性心脏,神经,和肌肉组织已经通过在电惰性支架上培养干细胞来改造。这些脚手架,即使合适,与在导电支架上培养时细胞显示的结果相比,可能不是很有用。注意到干细胞在导电支架上培养时随时间发展的成熟表型,科学家们一直试图赋予传统的非导电支架导电性。实现这一目标的一种方法是将导电聚合物(聚苯胺,聚吡咯,PEDOT:PSS)与惰性生物材料一起使用各种制造技术生产3D支架。一种这样的技术是投影微立体光刻,这是一种增材制造技术。它使用与导电聚合物共混的光敏溶液,并使用可见光/紫外光使溶液交联。可以使用这种技术迅速打印具有复杂建筑特征的3D支架,直到微尺度分辨率。本章报告了使用投影微立体光刻技术制造导电支架的协议。
    Three-dimensional (3D) scaffolds provide cell support while improving tissue regeneration through amplified cellular responses between implanted materials and native tissues. So far, highly conductive cardiac, nerve, and muscle tissues have been engineered by culturing stem cells on electrically inert scaffolds. These scaffolds, even though suitable, may not be very useful compared to the results shown by cells when cultured on conductive scaffolds. Noticing the mature phenotype the stem cells develop over time when cultured on conductive scaffolds, scientists have been trying to impart conductivity to traditionally nonconductive scaffolds. One way to achieve this goal is to blend conductive polymers (polyaniline, polypyrrole, PEDOT:PSS) with inert biomaterials and produce a 3D scaffold using various fabrication techniques. One such technique is projection micro-stereolithography, which is an additive manufacturing technique. It uses a photosensitive solution blended with conductive polymers and uses visible/UV light to crosslink the solution. 3D scaffolds with complex architectural features down to microscale resolution can be printed with this technique promptly. This chapter reports a protocol to fabricate electrically conductive scaffolds using projection micro-stereolithography.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    经皮药物递送系统(TDDS)的进步之一是微针(MNs)的开发。这些微米大小的针用于递送各种类型的药物以解决其他经皮技术以及口服药物递送系统的缺点。与肠胃外药物递送相比,由于具有微创和疼痛的自我施用,MN具有高的患者接受度。多年来,已经采用了各种方法来发展MN并使其更具成本效益,准确,适用于多种应用。一种这样的方法是MN的3D打印。通过提高精度等功能,使用3D打印的MN平台的开发成为可能。打印分辨率,以及使用低成本原材料的可行性。在这次审查中,我们试图解释各种类型的MN,制造方法,用于配制MN的材料,以及最近使用3D打印MN的应用程序。
    One of the advancements of the transdermal drug delivery system (TDDS) is the development of microneedles (MNs). These micron-sized needles are used for delivering various types of drugs to address the disadvantage of other transdermal techniques as well as oral drug delivery systems. MNs have high patient acceptance due to self-administration with minimally invasive and pain compared to the parenteral drug delivery. Over the years, various methods have been adopted to evolve the MNs and make them more cost-effective, accurate, and suitable for multiple applications. One such method is the 3D printing of MNs. The development of MN platforms using 3D printing has been made possible by improved features like precision, printing resolution, and the feasibility of using low-cost raw materials. In this review, we have tried to explain various types of MNs, fabrication methods, materials used in the formulation of MNs, and the recent applications that utilize 3D-printed MNs.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    目的:以三氟化镱为填料,配制用于3D打印的实验性甲基丙烯酸酯基可光聚合树脂,并评估其机械性能,物理化学,和生物学特性。
    方法:用60重量%UDMA配制树脂基质,40wt%TEGDMA,1wt%TPO,和0.01wt%BHT。添加浓度为1(G1%)的三氟化镱,2(G2%),3(G3%),4(G4%),和5(G5%)wt%。一组保持不添加填料作为对照(GC)。样品在3D构建器软件中设计并使用UV-DLP3D打印机打印。将样品用异丙醇超声处理并UV固化60分钟。测试树脂的转化度(DC),抗弯强度,努普显微硬度,在溶剂中软化,射线不透性,比色分析,和细胞毒性(MTT和SRB)。
    结果:后聚合增加了所有组的转化程度(p<0.05)。G2%在后聚合后显示出最高的DC。G2%与G1%和GC的抗弯强度没有差异(p>0.05)。所有组在溶剂浸渍后显示硬度降低。射线不透性没有发现统计学差异,在溶剂中软化(ΔKHN%),比色分光光度法,细胞毒性(MTT)(p>0.05)。G1%显示SRB测定的细胞活力降低(p<0.05)。
    结论:可以在不损害机械性能的情况下,添加2%三氟化镱作为填料,生产实验性可光聚合3D打印树脂,物理化学,和生物学特性,与目前的临时材料相当。
    OBJECTIVE: To formulate an experimental methacrylate-based photo-polymerizable resin for 3D printing with ytterbium trifluoride as filler and to evaluate the mechanical, physicochemical, and biological properties.
    METHODS: Resin matrix was formulated with 60 wt% UDMA, 40 wt% TEGDMA, 1 wt% TPO, and 0.01 wt% BHT. Ytterbium Trifluoride was added in concentrations of 1 (G1 %), 2 (G2 %), 3 (G3 %), 4 (G4 %), and 5 (G5 %) wt%. One group remained without filler addition as control (GC). The samples were designed in 3D builder software and printed using a UV-DLP 3D printer. The samples were ultrasonicated with isopropanol and UV cured for 60 min. The resins were tested for degree of conversion (DC), flexural strength, Knoop microhardness, softening in solvent, radiopacity, colorimetric analysis, and cytotoxicity (MTT and SRB).
    RESULTS: Post-polymerization increased the degree of conversion of all groups (p < 0.05). G2 % showed the highest DC after post-polymerization. G2 % showed no differences in flexural strength from the G1 % and GC (p > 0.05). All groups showed a hardness reduction after solvent immersion. No statistical difference was found in radiopacity, softening in solvent (ΔKHN%), colorimetric spectrophotometry, and cytotoxicity (MTT) (p > 0.05). G1 % showed reduced cell viability for SRB assay (p < 0.05).
    CONCLUSIONS: It was possible to produce an experimental photo-polymerizable 3D printable resin with the addition of 2 % ytterbium trifluoride as filler without compromising the mechanical, physicochemical, and biological properties, comparable to the current provisional materials.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    背景:这项初步体外研究的目的是评估灭菌对植入物内轴的影响,种植体间轴,通过使用实验室扫描仪(LBS)与具有口腔内扫描体(ISB)的口腔内扫描仪(IOS),在一条直线上的三个植入物的植入物内距离和植入物间距离。
    方法:打印的3D模型,在位置15#中具有三个内部十六进制类似物,16#,17#被使用Zirkonzhan(ZZ)口腔内扫描体(ISB),使用两件式钛。ZZISB通过7系列牙翼(LBS)扫描,Primescan(IOS)在灭菌前扫描30次,灭菌后扫描30次。对于每个扫描(前和后),创建立体光刻(STL)文件,并且通过使用3D分析软件将灭菌前和灭菌后的所有扫描之间的比较叠加在实验室扫描上。进行Kolmogorov-Smirnov测试,然后进行Wilcoxon签名等级测试。(p<0.05)结果:ZZISB灭菌后,植入物间距的平均误差显着增加(p<0.0005),植入物内距离1,2,3(p<0.0005),植入物内轴1,3(p<0.0005)和植入物内轴13,23(p<0.05)。相比之下,植入物内轴2(p<0.0005)和植入物内轴12(p<0.0005)的平均误差显著降低.
    结论:ZZISB在灭菌后显示所有四个参数的变化。关于所有四个参数,中间ISB的平均误差变化最大。灭菌过程可在三个循环后影响ZZISB的三维(3D)结构。该领域的文献缺乏,需要进一步研究以探索灭菌(多个循环)对不同ISB的影响,并制定有关行业中每种ISB灭菌量的批准指南。
    BACKGROUND: The purpose of this pilot in-vitro study was to assess the effect of sterilization on the intra-implant axis, inter-implant axis, intra-implant distance and inter-implant distance of three implants in a straight line by using laboratory scanner (LBS) versus intra-oral scanner (IOS) with intra-oral scan bodies (ISB).
    METHODS: A printed 3D model with three internal hex analogs in the positions 15#,16#,17# was used. Zirkonzhan (ZZ) intra-oral scan body (ISB), two-piece titanium was used. The ZZ ISBs were scanned by 7 Series dental wings (LBS) and 30 times by Primescan (IOS) pre sterilization and 30 times post sterilization. For each scan (pre and post) stereolithography (STL) file was created and a comparison between all the scans pre sterilization and post sterilization were superimposed on the laboratory scan by using a 3D analyzing software. A Kolmogorov-Smirnov test performed followed by Wilcoxon Signed Ranks tests. (p < 0.05) Results: Post sterilization of the ZZ ISB, the mean errors were significantly increased for the inter-implant distances (p < 0.0005), intra-implant distances 1,2,3 (p < 0.0005), intra-implant axis 1,3 (p < 0.0005) and inter-implant axes 13,23 (p < 0.05). In contrast, the mean errors for intra-implant axis 2 (p < 0.0005) and inter-implant axis 12 (p < 0.0005) were significantly reduced.
    CONCLUSIONS: ZZ ISB showed changes in all four parameters after sterilization. The middle ISB had the largest changes in mean error regarding all four parameters. Sterilization process may affect the three-dimensional (3D) structure of the ZZ ISB after three cycles. There is a lack in the literature in this field and there is a need for further studies to explore the effect of sterilization (multiple cycles) on different ISBs and for creating an approved guidelines regarding the amount of sterilization for each ISB in the industry.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    微流体设备具有广泛社区使用的巨大潜力,但目前的瓶颈是从研究原型到大规模生产的过渡,因为黄金标准原型战略在扩大制造产量时成本太高,劳动力密集。为了增加吞吐量,这是常见的模具装置的热塑性塑料,由于较低的单位成本,在大批量。然而,传统的制造方法有很高的前期开发费用,而缓慢的模具制造方法限制了设计发展的速度,以加快适销性。为了克服这个限制,我们提出了一种快速成型协议,通过类似于软光刻中使用的中间步骤,从立体光刻(SLA)3D打印模板制造热塑性设备。我们将此过程应用于自操作毛细管电路的设计,非常适合作为低成本分散式化验部署。这些几何和材料相关设备的快速发展得益于热塑性塑料的原型设计。我们通过执行自主的毛细管电路来验证构建的毛细管电路,预编程,用于蛋白质定量的基于珠子的免疫荧光测定。总的来说,这种原型方法为快速迭代和精炼微流体设备提供了一种有价值的手段,为未来的生产规模铺平了道路。
    Microfluidic devices have immense potential for widespread community use, but a current bottleneck is the transition from research prototyping into mass production because the gold standard prototyping strategy is too costly and labor intensive when scaling up fabrication throughput. For increased throughput, it is common to mold devices out of thermoplastics due to low per-unit costs at high volumes. However, conventional fabrication methods have high upfront development expenses with slow mold fabrication methods that limit the speed of design evolution for expedited marketability. To overcome this limitation, we propose a rapid prototyping protocol to fabricate thermoplastic devices from a stereolithography (SLA) 3D printed template through intermediate steps akin to those employed in soft lithography. We apply this process towards the design of self-operating capillaric circuits, well suited for deployment as low-cost decentralized assays. Rapid development of these geometry- and material-dependent devices benefits from prototyping with thermoplastics. We validated the constructed capillaric circuits by performing an autonomous, pre-programmed, bead-based immunofluorescent assay for protein quantification. Overall, this prototyping method provides a valuable means for quickly iterating and refining microfluidic devices, paving the way for future scaling of production.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    OBJECTIVE: To share our experience in creating precise anatomical models using available open-source software.
    METHODS: An affordable method is presented, where from a DICOM format of a computed tomography, a segmentation of the region of interest is achieved. The image is then processed for surface improvement and the DICOM format is converted to STL. Error correction is achieved and the model is optimized to be printed by stereolithography with a desktop 3D printer.
    RESULTS: Precise measurements of the dimensions of the DICOM file (CT), the STL file, and the printed model (3D) were carried out. For the C6 vertebra, the dimensions of the horizontal axis were 55.3 mm (CT), 55.337 mm (STL), and 55.3183 mm (3D). The dimensions of the vertebral body were 14.2 mm (CT), 14.551 mm (STL), and 14.8159 mm (3D). The length of the spinous process was 18.2 mm (CT), 18.283 mm (STL), and 18.2266 mm (3D), while its width was 8.5 mm (CT), 8.3644 mm (STL), and 8.3226 mm (3D). For the C7 vertebra, the dimensions of the horizontal axis were 58.6 mm (CT), 58.739 mm (STL), and 58.7144 mm (3D). The dimensions of the vertebral body were 14 mm (CT), 14.0255 mm (STL), and 14.2312 mm (3D). The length of the spinous process was 18.7 mm (CT), 18.79 mm (STL), and 18.6458 mm (3D), and its width was 8.9 mm (CT), 8.988 mm (STL), and 8.9760 mm (3D).
    CONCLUSIONS: The printing of a 3D model of bone tissue using this algorithm is a viable, useful option with high precision.
    OBJECTIVE: Compartir nuestra experiencia para crear modelos anatómicos precisos utilizando software con licencia abierta disponibles.
    UNASSIGNED: Se presenta un método asequible, en donde a partir de un formato DICOM de una tomografía computarizada se logra una segmentación de la región de interés. Posteriormente se procesa la imagen para una mejora de superficie y se realiza la conversión de formato DICOM a STL. Se logra la corrección de errores y se optimiza el modelo para luego ser impreso por medio de estereolitografía con una impresora 3D de escritorio.
    RESULTS: Se efectuaron mediciones precisas de las dimensiones del archivo DICOM (TC), del archivo STL y del modelo impreso (3D). Para la vértebra C6, las dimensiones del eje horizontal fueron 55.3 mm (TC), 55.337 mm (STL) y 55.3183 mm (3D). Las dimensiones del cuerpo vertebral fueron 14.2 mm (TC), 14.551 mm (STL) y 14.8159 mm (3D). La longitud de la apófisis espinosa fue de 18.2 mm (TC), 18.283 mm (STL) y 18.2266 mm (3D), mientras que su ancho fue de 8.5 mm (TC), 8.3644 mm (STL) y 8.3226 mm (3D). Para la vértebra C7, las dimensiones del eje horizontal fueron 58.6 mm (TC), 58.739 mm (STL) y 58.7144 mm (3D). Las dimensiones del cuerpo vertebral fueron 14 mm (TC), 14.0255 mm (STL) y 14.2312 mm (3D). La longitud de la apófisis espinosa fue de 18.7 mm (TC), 18.79 mm (STL) y 18.6458 mm (3D), y su ancho fue de 8.9 mm (TC), 8.988 mm (STL) y 8.9760 mm (3D).
    UNASSIGNED: La impresión de un modelo en 3D de tejido óseo mediante este algoritmo resulta una opción viable, útil y con una alta precisión.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

公众号