Mesh : Printing, Three-Dimensional Lab-On-A-Chip Devices Stereolithography Equipment Design Plastics / chemistry Microfluidic Analytical Techniques / instrumentation methods

来  源:   DOI:10.1038/s41598-024-68761-5   PDF(Pubmed)

Abstract:
Microfluidic devices have immense potential for widespread community use, but a current bottleneck is the transition from research prototyping into mass production because the gold standard prototyping strategy is too costly and labor intensive when scaling up fabrication throughput. For increased throughput, it is common to mold devices out of thermoplastics due to low per-unit costs at high volumes. However, conventional fabrication methods have high upfront development expenses with slow mold fabrication methods that limit the speed of design evolution for expedited marketability. To overcome this limitation, we propose a rapid prototyping protocol to fabricate thermoplastic devices from a stereolithography (SLA) 3D printed template through intermediate steps akin to those employed in soft lithography. We apply this process towards the design of self-operating capillaric circuits, well suited for deployment as low-cost decentralized assays. Rapid development of these geometry- and material-dependent devices benefits from prototyping with thermoplastics. We validated the constructed capillaric circuits by performing an autonomous, pre-programmed, bead-based immunofluorescent assay for protein quantification. Overall, this prototyping method provides a valuable means for quickly iterating and refining microfluidic devices, paving the way for future scaling of production.
摘要:
微流体设备具有广泛社区使用的巨大潜力,但目前的瓶颈是从研究原型到大规模生产的过渡,因为黄金标准原型战略在扩大制造产量时成本太高,劳动力密集。为了增加吞吐量,这是常见的模具装置的热塑性塑料,由于较低的单位成本,在大批量。然而,传统的制造方法有很高的前期开发费用,而缓慢的模具制造方法限制了设计发展的速度,以加快适销性。为了克服这个限制,我们提出了一种快速成型协议,通过类似于软光刻中使用的中间步骤,从立体光刻(SLA)3D打印模板制造热塑性设备。我们将此过程应用于自操作毛细管电路的设计,非常适合作为低成本分散式化验部署。这些几何和材料相关设备的快速发展得益于热塑性塑料的原型设计。我们通过执行自主的毛细管电路来验证构建的毛细管电路,预编程,用于蛋白质定量的基于珠子的免疫荧光测定。总的来说,这种原型方法为快速迭代和精炼微流体设备提供了一种有价值的手段,为未来的生产规模铺平了道路。
公众号