Pericytes

周细胞
  • 文章类型: Journal Article
    谱系追踪和免疫组织化学的结合有助于鉴定小鼠肝脏中肝星状细胞(HSC)的亚群和命运。HSC是肝损伤后充当肌成纤维细胞前体的窦周细胞。单细胞RNA测序方法最近有助于区分中枢和门静脉HSC。尚未描述特定的Cre系到谱系示踪门户HSC。我们使用了三条Cre线(Lrat-Cre,PDGFRβ-CreERT2和SMMHC-CreERT2)已知与tdTomato表达报告分子组合标记包括HSC的间充质细胞。所有三个Cre系标记HSC以及平滑肌细胞(SMC)的群体。使用SMMHC-CreERT2,我们在肝小叶的门静脉周围区域(称为1-HSC区)中鉴定了HSC的亚型。我们谱系追踪tdTomato表达区1-HSC超过1年,描述了两种纤维化模型中的纤维化行为,并研究了它们在纤维化过程中的可能作用。这种HSC亚型在健康条件下位于1区;然而,在肝纤维化的临床前模型(CCl4和MASH)中,分区被破坏。区1-HSC不转化为表达αSMA的肌成纤维细胞。相反,他们参与正弦毛细管化。我们描述了一种在生理条件下仅限于1区的新型HSC亚型及其在肝损伤后的可能功能。与公认的概念相反,这种HSC亚型不会转化为αSMA阳性肌成纤维细胞;相反,区1-HSC采用毛细管周细胞的特性,从而参与正弦毛细管化。
    The combination of lineage tracing and immunohistochemistry has helped to identify subpopulations and fate of hepatic stellate cells (HSC) in murine liver. HSC are sinusoidal pericytes that act as myofibroblast precursors after liver injury. Single cell RNA sequencing approaches have recently helped to differentiate central and portal HSC. A specific Cre line to lineage trace portal HSC has not yet been described. We used three Cre lines (Lrat-Cre, PDGFRβ-CreERT2 and SMMHC-CreERT2) known to label mesenchymal cells including HSC in combination with a tdTomato-expressing reporter. All three Cre lines labeled populations of HSC as well as smooth muscle cells (SMC). Using the SMMHC-CreERT2, we identified a subtype of HSC in the periportal area of the hepatic lobule (termed zone 1-HSC). We lineage traced tdTomato-expressing zone 1-HSC over 1 year, described fibrotic behavior in two fibrosis models and investigated their possible role during fibrosis. This HSC subtype resides in zone 1 under healthy conditions; however, zonation is disrupted in preclinical models of liver fibrosis (CCl4 and MASH). Zone 1-HSC do not transform into αSMA-expressing myofibroblasts. Rather, they participate in sinusoidal capillarization. We describe a novel subtype of HSC restricted to zone 1 under physiological conditions and its possible function after liver injury. In contrast to the accepted notion, this HSC subtype does not transform into αSMA-positive myofibroblasts; rather, zone 1-HSC adopt properties of capillary pericytes, thereby participating in sinusoidal capillarization.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    硫酸软骨素蛋白聚糖(CSPGs)是中枢神经系统(CNS)细胞外基质的基本成分。其中,神经胶质抗原2(NG2)作为跨膜CSPG,在不同的细胞群体中专门表达,统称为NG2表达细胞。这些神秘的细胞,在发育中和成年的中枢神经系统中发现,已经用各种名称表示,包括NG2祖细胞,多突胶质细胞,突触细胞,NG2细胞,NG2-Glia,但通常被称为少突胶质细胞祖细胞。以高增殖率和独特的形态为特征,NG2表达细胞与神经元分离,星形胶质细胞,和少突胶质细胞。有趣的是,一些NG2表达细胞与神经元形成功能性谷氨酸能突触,挑战长期以来的信念,即只有神经元拥有神经传递所需的复杂机制。在中枢神经系统,围绕NG2表达细胞的复杂性延伸到它们的分类。此外,NG2表达已在周细胞和免疫细胞中被证明,提示在调节大脑先天免疫和神经免疫串扰中的作用。正在进行的辩论围绕着它们的异质性,作为各种细胞类型的祖细胞的潜力,对神经炎症的反应,以及NG2的作用。因此,这篇综述旨在通过深入研究NG2表达细胞的结构来揭示它们的谜团,功能,和信号通路。我们将批判性地评估NG2在中枢神经系统表达的文献,并解决围绕它们在神经炎症和神经变性中的分类和作用的有争议的问题。通过解开NG2表达细胞的复杂性,我们希望为更全面地了解它们对中枢神经系统健康和神经系统疾病的贡献铺平道路.
    Chondroitin sulfate proteoglycans (CSPGs) are fundamental components of the extracellular matrix in the central nervous system (CNS). Among these, the Nerve-Glial antigen 2 (NG2) stands out as a transmembrane CSPG exclusively expressed in a different population of cells collectively termed NG2-expressing cells. These enigmatic cells, found throughout the developing and adult CNS, have been indicated with various names, including NG2 progenitor cells, polydendrocytes, synantocytes, NG2 cells, and NG2-Glia, but are more commonly referred to as oligodendrocyte progenitor cells. Characterized by high proliferation rates and unique morphology, NG2-expressing cells stand apart from neurons, astrocytes, and oligodendrocytes. Intriguingly, some NG2-expressing cells form functional glutamatergic synapses with neurons, challenging the long-held belief that only neurons possess the intricate machinery required for neurotransmission. In the CNS, the complexity surrounding NG2-expressing cells extends to their classification. Additionally, NG2 expression has been documented in pericytes and immune cells, suggesting a role in regulating brain innate immunity and neuro-immune crosstalk in homeostasis. Ongoing debates revolve around their heterogeneity, potential as progenitors for various cell types, responses to neuroinflammation, and the role of NG2. Therefore, this review aims to shed light on the enigma of NG2-expressing cells by delving into their structure, functions, and signaling pathways. We will critically evaluate the literature on NG2 expression across the CNS, and address the contentious issues surrounding their classification and roles in neuroinflammation and neurodegeneration. By unraveling the intricacies of NG2-expressing cells, we hope to pave the way for a more comprehensive understanding of their contributions to CNS health and during neurological disorders.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    TGF(转化生长因子)-β途径是血脑屏障发育的核心,因为它调节周细胞和内皮细胞之间的串扰。脑周细胞(突变体)中缺乏TGFβ受体Alk5(活化素受体样激酶5)的小鼠胚胎显示内皮细胞过度增殖,血管形态异常,和大体生发基质出血-脑室内出血(GMH-IVH),导致围产期致死。非细胞周细胞中ALK5信号如何自主调节内皮细胞行为的潜在机制仍然难以捉摸。
    使用ALK5沉默的人脑周细胞的转录组学分析鉴定了差异基因表达。从具有GMH-IVH的突变胚胎小鼠和早产人IVH脑样品中分离的脑血管细胞用于靶标验证。最后,药理学和遗传抑制用于研究对GMH-IVH病理的治疗作用。
    这里,我们确定TGFβ/ALK5途径通过表观遗传重塑强烈抑制周细胞中的ANGPT2(血管生成素-2)。TGFβ驱动的SMAD(母亲对十性截瘫的抑制作用)3/4与TGIF1(TGFβ诱导的同源异型盒1)和HDAC(组蛋白脱乙酰酶)5结合,在Angpt2启动子处形成共阻遏复合物,导致启动子脱乙酰和基因抑制。此外,鼠和人生发基质血管在GMH-IVH期间显示ANGPT2表达增加。从鼠生发基质中分离血管细胞将周细胞鉴定为过量ANGPT2的细胞来源。此外,突变的内皮细胞表现出更高的磷酸化TIE2(酪氨酸蛋白激酶受体)。突变体中ANGPT2的药理学或遗传学抑制改善生发基质血管形态并减弱GMH发病机理。重要的是,突变周细胞中Angpt2的遗传消融可防止围产期致死,延长生存期。
    该研究表明,周细胞中TGFβ介导的ANGPT2抑制对于维持血脑屏障完整性至关重要,并将周细胞衍生的ANGPT2确定为GMH-IVH的重要病理靶标。
    UNASSIGNED: TGF (transforming growth factor)-β pathway is central to blood-brain barrier development as it regulates cross talk between pericytes and endothelial cells. Murine embryos lacking TGFβ receptor Alk5 (activin receptor-like kinase 5) in brain pericytes (mutants) display endothelial cell hyperproliferation, abnormal vessel morphology, and gross germinal matrix hemorrhage-intraventricular hemorrhage (GMH-IVH), leading to perinatal lethality. Mechanisms underlying how ALK5 signaling in pericytes noncell autonomously regulates endothelial cell behavior remain elusive.
    UNASSIGNED: Transcriptomic analysis of human brain pericytes with ALK5 silencing identified differential gene expression. Brain vascular cells isolated from mutant embryonic mice with GMH-IVH and preterm human IVH brain samples were utilized for target validation. Finally, pharmacological and genetic inhibition was used to study the therapeutic effects on GMH-IVH pathology.
    UNASSIGNED: Herein, we establish that the TGFβ/ALK5 pathway robustly represses ANGPT2 (angiopoietin-2) in pericytes via epigenetic remodeling. TGFβ-driven SMAD (suppressor of mothers against decapentaplegic) 3/4 associates with TGIF1 (TGFβ-induced factor homeobox 1) and HDAC (histone deacetylase) 5 to form a corepressor complex at the Angpt2 promoter, resulting in promoter deacetylation and gene repression. Moreover, murine and human germinal matrix vessels display increased ANGPT2 expression during GMH-IVH. Isolation of vascular cells from murine germinal matrix identifies pericytes as a cellular source of excessive ANGPT2. In addition, mutant endothelial cells exhibit higher phosphorylated TIE2 (tyrosine protein kinase receptor). Pharmacological or genetic inhibition of ANGPT2 in mutants improves germinal matrix vessel morphology and attenuates GMH pathogenesis. Importantly, genetic ablation of Angpt2 in mutant pericytes prevents perinatal lethality, prolonging survival.
    UNASSIGNED: This study demonstrates that TGFβ-mediated ANGPT2 repression in pericytes is critical for maintaining blood-brain barrier integrity and identifies pericyte-derived ANGPT2 as an important pathological target for GMH-IVH.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    组织由许多不同类型的细胞形成和塑造,并通过无数的相互作用进行编排。因此,破译组织的生物复杂性需要以细胞水平的分辨率来研究它,可以探索和彻底解剖不同细胞类型的分子和生化特征。不幸的是,缺乏全面的识别方法,隔离,从许多组织中培养每种细胞类型阻碍了进展。这里,我们提出了一种用于构成人类乳房的细胞类型的广度的方法。我们的目标一直是了解这些不同乳腺细胞类型的本质,来揭示解释其内在特征的潜在生物学,相互作用的后果,以及它们对组织的贡献。这种生物探索需要细胞纯化,深度RNA测序-以及定义每种细胞类型的基因和途径的彻底解剖。而分子分析在相邻的文章中提出,我们在这里介绍了人类乳房的详尽细胞解剖,并探讨了其细胞组成和组织学组织。此外,我们引入了一种新的FACS抗体组和严格的门控策略,能够分离12种主要乳腺细胞类型中的每一种至纯度.最后,我们描述了从几乎所有乳腺细胞类型中创建原代细胞模型的过程-有些是它们的第一个类型-并将这些模型作为研究乳腺组织和肿瘤内动态细胞相互作用的关键工具。一起,这项工作提供了独特的乳房视角,揭示了对其细胞的洞察力,分子,和生化成分。
    Tissues are formed and shaped by cells of many different types and are orchestrated through countless interactions. Deciphering a tissue\'s biological complexity thus requires studying it at cell-level resolution, where molecular and biochemical features of different cell types can be explored and thoroughly dissected. Unfortunately, the lack of comprehensive methods to identify, isolate, and culture each cell type from many tissues has impeded progress. Here, we present a method for the breadth of cell types composing the human breast. Our goal has long been to understand the essence of each of these different breast cell types, to reveal the underlying biology explaining their intrinsic features, the consequences of interactions, and their contributions to the tissue. This biological exploration has required cell purification, deep-RNA sequencing-and a thorough dissection of the genes and pathways defining each cell type. Whereas the molecular analysis is presented in an adjoining article, we present here an exhaustive cellular dissection of the human breast and explore its cellular composition and histological organization. Moreover, we introduce a novel FACS antibody panel and rigorous gating strategy capable of isolating each of the twelve major breast cell types to purity. Finally, we describe the creation of primary cell models from nearly every breast cell type-some the first of their kind- and submit these as critical tools for studying the dynamic cellular interactions within breast tissues and tumors. Together, this body of work delivers a unique perspective of the breast, revealing insights into its cellular, molecular, and biochemical composition.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    探讨Sox10细胞的性别依赖性分化及其对脂多糖(LPS)暴露或缺血等病理条件的反应。我们使用Sox10Cre-ERT2,td番茄小鼠。他莫昔芬给药诱导这些细胞中红色荧光蛋白(RFP)的表达,通过免疫荧光染色促进他们在LPS注射和缺血后的后续跟踪和分析。在LPS施用后,注射碘化丙啶(PI)以标记坏死细胞。我们发现雌性小鼠Sox10细胞向周细胞的转化率明显高于雄性小鼠,尤其是那些暴露于LPS的人。注射LPS后,女性的PI+坏死细胞数量明显多于男性。此外,RFP+细胞不与神经胶质原纤维酸性蛋白(GFAP)或分化簇11b(CD11b)共定位。同样,脑缺血后,RFP+细胞不表达分化簇13(CD13),神经元核(NeuN),GFAP,或电离的钙结合衔接分子1(Iba-1)。这些发现表明,LPS暴露后Sox10细胞向周细胞的转化是性别依赖性的,在LPS暴露后或在缺血条件下,雄性和雌性组均未显示分化为其他细胞类型。两性之间LPS诱导的周细胞坏死的差异可以解释两性Sox10细胞向周细胞转化的变化。
    To investigate the sex-dependent differentiation of Sox10 cells and their response to pathological conditions such as lipopolysaccharide (LPS) exposure or ischemia, we utilized Sox10 Cre-ERT2, tdTomato mice. Tamoxifen administration induced the expression of red fluorescent protein (RFP) in these cells, facilitating their subsequent tracking and analysis after LPS injection and ischemia via immunofluorescence staining. Propidium iodide (PI) was injected to label necrotic cells following LPS administration. We found that the conversion of Sox10 cells to pericytes in female mice was significantly higher than in male mice, especially in those exposed to LPS. After LPS injection, the number of PI+ necrotic cells were significantly greater in females than in males. Moreover, RFP+ cells did not co-localize with glial fibrillary acidic protein (GFAP) or cluster of differentiation 11b (CD11b). Similarly, after brain ischemia, RFP+ cells did not express cluster of differentiation 13 (CD13), neuronal nuclei (NeuN), GFAP, or ionised calcium binding adaptor molecule 1 (Iba-1). These findings indicate that the conversion of Sox10 cells to pericytes following LPS exposure is sex-dependent, with neither male nor female groups showing differentiation into other cell types after LPS exposure or under ischemic conditions. The differences in LPS-induced necrosis of pericytes between sexes may explain the variations in the conversion of Sox10 cells to pericytes in both sexes.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    糖尿病介导内皮功能障碍并增加阿尔茨海默病和相关痴呆的风险。糖尿病也失调ET系统。ET-1介导的脑微血管周细胞(BMVPC)的收缩已被证明有助于脑灌注不足。细胞衰老,阻止有害细胞增殖的过程,刺激内皮细胞的表型变化和促炎反应,影响其生存和功能。因此,我们假设ET-1介导糖尿病样疾病中BMVPC衰老和表型改变.将人BMVPC在有或没有ET-1(1μmol/L)的糖尿病样条件下孵育3天和7天。过氧化氢(100μmol/LH2O2)用作衰老和模拟缺血条件的阳性对照。对细胞进行衰老相关的β-半乳糖苷酶染色或处理用于免疫印迹和定量实时PCR分析。在额外的实验中,在存在或不存在ETA受体拮抗剂BQ-123(20μmol/L)或ETB受体拮抗剂BQ-788(20μmol/L)的情况下,用ET-1刺激细胞。ET-1刺激增加了β-半乳糖苷酶的积累,这被BQ-123阻止。ET-1还增加了传统的衰老标记p16蛋白和周细胞特异性衰老标记,TGFB1i1,PP1CA,IGFBP7此外,ET-1在高糖条件下刺激收缩蛋白α-SMA和小胶质细胞标记骨桥蛋白,表明向鞘膜或小胶质细胞样表型转变。总之,ET-1引发衰老,改变ETA和ETB受体,并导致糖尿病样条件下BMVPCs的表型变化。这些体外发现需要在体内进一步研究,以确定ETA受体在周细胞衰老进程和VCID表型变化中的作用。
    Diabetes mediates endothelial dysfunction and increases the risk of Alzheimer\'s Disease & Related Dementias. Diabetes also dysregulates the ET system. ET-1-mediated constriction of brain microvascular pericytes (BMVPCs) has been shown to contribute to brain hypoperfusion. Cellular senescence, a process that arrests the proliferation of harmful cells, instigates phenotypical changes and proinflammatory responses in endothelial cells that impact their survival and function. Thus, we hypothesized that ET-1 mediates BMVPC senescence and phenotypical changes in diabetes-like conditions. Human BMVPCs were incubated in diabetes-like conditions with or without ET-1 (1 µmol/L) for 3 and 7 days. Hydrogen peroxide (100 µmol/L H2O2) was used as a positive control for senescence and to mimic ischemic conditions. Cells were stained for senescence-associated β-galactosidase or processed for immunoblotting and quantitative real-time PCR analyses. In additional experiments, cells were stimulated with ET-1 in the presence or absence of ETA receptor antagonist BQ-123 (20 μmol/L) or ETB receptor antagonist BQ-788 (20 μmol/L). ET-1 stimulation increased β-galactosidase accumulation which was prevented by BQ-123. ET-1 also increased traditional senescence marker p16 protein and pericyte-specific senescence markers, TGFB1i1, PP1CA, and IGFBP7. Furthermore, ET-1 stimulated contractile protein α-SMA and microglial marker ostepontin in high glucose suggesting a shift toward an ensheathing or microglia-like phenotype. In conclusion, ET-1 triggers senescence, alters ETA and ETB receptors, and causes phenotypical changes in BMVPCs under diabetes-like conditions. These in vitro findings need to be further studied in vivo to establish the role of ETA receptors in the progression of pericyte senescence and phenotypical changes in VCID.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    肿瘤微环境对结直肠癌患者的预后和治疗作用至关重要,肿瘤血管对结直肠癌的影响也日益受到重视。近年研究发现,新生肿瘤血管与正常血管结构功能均具有较大差异,这种新生血管的内皮细胞形态异常,周细胞松散附着或缺失以及基底膜的异常增厚或完全缺失,出现迂曲、囊性扩张等异常血管结构,从而抑制药物递送,而血管正常化后可恢复血管功能,目前将周细胞覆盖率、内皮细胞及基底膜渗漏作为评估血管正常化的评价指标。新近研究发现结直肠癌组织中血管的内皮细胞、周细胞及基底膜对肿瘤具有双向调控作用,本文综述血管相关结构对结直肠癌的具体影响,以及周细胞覆盖率和血管通透性作为评价肿瘤血管正常化的理论依据,总结了血管正常化的相关检测指标及对患者相关治疗的积极影响,使患者因血管正常化受益的同时尽可能地减少其不良影响。.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    中风是全球死亡率和发病率的主要原因,也是高收入国家老年人癫痫的最常见原因。近年来,越来越明显的是,缺血性和出血性中风都会导致血脑屏障(BBB)功能障碍,这种损伤会导致癫痫的发生。然而,没有直接比较BBB功能障碍和卒中后癫痫(PSE)的研究。因此,本文综述了BBB功能障碍在PSE动物模型和临床研究中的作用。中风诱发BBB功能障碍有多种机制,包括胞吞增多,紧密连接功能障碍,扩散去极化,星形胶质细胞和周细胞丢失,反应性星形细胞增多症,血管生成,基质金属蛋白酶激活,神经炎症,三磷酸腺苷耗尽,氧化应激,最后细胞死亡。这些影响发生的程度取决于缺血的严重程度,由此细胞死亡是关键缺血区域中BBB破坏的更突出的机制。BBB功能障碍可通过增加出血性转化的风险而导致癫痫发生。增加中风的大小和脑血管源性水肿的数量,兴奋性化合物的外渗,增加神经炎症。此外,BBB功能障碍后白蛋白外渗主要通过增加的转化生长因子β信号促进癫痫发生.最后,癫痫发作本身会诱发BBB功能障碍,从而以周期性的方式促进癫痫的发生。在修复这种BBB功能障碍时,通过血小板源性生长因子β信号传导的周细胞迁移是BBB重建所必需的,星形胶质细胞也发挥作用。虽然动物中风模型有其局限性,它们为中风后恢复血脑屏障的潜在治疗方法的开发提供了有价值的见解,最终目标是改善结果并最大限度地减少PSE的发生。为了实现这个目标,雷帕霉素,他汀类药物,氯沙坦,塞马鲁肽,二甲双胍显示出希望,由此周细胞迁移的调节也可能是有益的。
    Stroke is a major contributor to mortality and morbidity worldwide and the most common cause of epilepsy in the elderly in high income nations. In recent years, it has become increasingly evident that both ischemic and hemorrhagic strokes induce dysfunction of the blood-brain barrier (BBB), and that this impairment can contribute to epileptogenesis. Nevertheless, studies directly comparing BBB dysfunction and poststroke epilepsy (PSE) are largely absent. Therefore, this review summarizes the role of BBB dysfunction in the development of PSE in animal models and clinical studies. There are multiple mechanisms whereby stroke induces BBB dysfunction, including increased transcytosis, tight junction dysfunction, spreading depolarizations, astrocyte and pericyte loss, reactive astrocytosis, angiogenesis, matrix metalloproteinase activation, neuroinflammation, adenosine triphosphate depletion, oxidative stress, and finally cell death. The degree to which these effects occur is dependent on the severity of the ischemia, whereby cell death is a more prominent mechanism of BBB disruption in regions of critical ischemia. BBB dysfunction can contribute to epileptogenesis by increasing the risk of hemorrhagic transformation, increasing stroke size and the amount of cerebral vasogenic edema, extravasation of excitatory compounds, and increasing neuroinflammation. Furthermore, albumin extravasation after BBB dysfunction contributes to epileptogenesis primarily via increased transforming growth factor β signaling. Finally, seizures themselves induce BBB dysfunction, thereby contributing to epileptogenesis in a cyclical manner. In repairing this BBB dysfunction, pericyte migration via platelet-derived growth factor β signaling is indispensable and required for reconstruction of the BBB, whereby astrocytes also play a role. Although animal stroke models have their limitations, they provide valuable insights into the development of potential therapeutics designed to restore the BBB after stroke, with the ultimate goal of improving outcomes and minimizing the occurrence of PSE. In pursuit of this goal, rapamycin, statins, losartan, semaglutide, and metformin show promise, whereby modulation of pericyte migration could also be beneficial.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    糖尿病与听力损失密切相关,然而,确切的机制仍不清楚。耳蜗血管纹和周细胞(PC)对听力至关重要。这项研究调查了高葡萄糖是否通过氧化应激引起的ROS水平升高而诱导耳蜗血管纹和周细胞凋亡。影响听力损失。
    我们在C57BL/6J小鼠中建立了II型糖尿病模型,并使用听觉脑干反应(ABR),伊文思蓝染色,HE染色,免疫组织化学,和免疫荧光来观察听力的变化,血迷宫屏障(BLB)通透性,血管纹形态,和凋亡蛋白表达。原代培养的血管纹周细胞接受高糖治疗,和凋亡水平使用流式细胞术评估,膜联蛋白V-FITC,Hoechst33342染色,蛋白质印迹,Mitosox,和JC-1探测器。
    糖尿病小鼠显示听力阈值下降,血管纹密度降低,氧化应激增加,细胞凋亡,和降低抗氧化剂水平。高糖暴露会增加周细胞的凋亡和ROS含量,而线粒体膜电位下降,AIF和细胞色素C(CytC)从线粒体释放到细胞质。添加氧化清除剂减少AIF和CytC释放,减少周细胞凋亡。
    高血糖可能通过氧化应激诱导耳蜗血管周细胞线粒体凋亡。
    UNASSIGNED: Diabetes is closely linked to hearing loss, yet the exact mechanisms remain unclear. Cochlear stria vascularis and pericytes (PCs) are crucial for hearing. This study investigates whether high glucose induces apoptosis in the cochlear stria vascularis and pericytes via elevated ROS levels due to oxidative stress, impacting hearing loss.
    UNASSIGNED: We established a type II diabetes model in C57BL/6J mice and used auditory brainstem response (ABR), Evans blue staining, HE staining, immunohistochemistry, and immunofluorescence to observe changes in hearing, blood-labyrinth barrier (BLB) permeability, stria vascularis morphology, and apoptosis protein expression. Primary cultured stria vascularis pericytes were subjected to high glucose, and apoptosis levels were assessed using flow cytometry, Annexin V-FITC, Hoechst 33342 staining, Western blot, Mitosox, and JC-1 probes.
    UNASSIGNED: Diabetic mice showed decreased hearing thresholds, reduced stria vascularis density, increased oxidative stress, cell apoptosis, and decreased antioxidant levels. High glucose exposure increased apoptosis and ROS content in pericytes, while mitochondrial membrane potential decreased, with AIF and cytochrome C (CytC) released from mitochondria to the cytoplasm. Adding oxidative scavengers reduced AIF and CytC release, decreasing pericyte apoptosis.
    UNASSIGNED: Hyperglycemia may induce mitochondrial apoptosis of cochlear stria vascularis pericytes through oxidative stress.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    基质Gla蛋白(MGP)是一种小的分泌蛋白,其功能需要维生素K依赖性γ-羧化作用。MGP已被鉴定为血管钙化的局部抑制剂,因为缺乏MGP的小鼠由于严重的动脉钙化和导致的动脉破裂而死亡。临床试验表明,活动性MGP的减少预示着由于心血管并发症而导致的患者预后不良。然而,最近的研究表明,MGP在发育过程中控制血管生成。MGP缺陷小鼠在肾脏和其他器官中表现出异常的血管过度形成和动静脉畸形。这种异常血管生成主要由血管内皮生长因子-A(VEGF-A)和VEGF受体-2(VEGFR2)的过度表达引起。然而,只有少数研究研究了MGP在组织损伤中的作用。我们观察到肾小球系膜细胞增殖和轻度间质纤维化,以及MGP无效小鼠肾脏中毛细血管增加,即使没有损伤。我们还创建了肾损伤小鼠模型,发现肾损伤会大大增加肾小管周围毛细血管内皮细胞和肾小管上皮细胞中MGP的表达。最后,我们的研究表明,MGP表达受损会加重肾损伤后肾小管周围毛细血管的稀疏和产生胶原的肌成纤维细胞的积累.肾小管周围毛细血管损伤引起毛细血管损失以及血管周细胞转分化为肌成纤维细胞。这些结果表明MGP在受损的肾脏中具有血管保护作用。临床试验已经开始测试MGP激活修复慢性肾脏疾病患者血管钙化的功效。在这篇“假设与理论”文章中,我们根据我们的实验结果和其他研究组以前的结果,讨论了MGP在组织损伤过程中防止血管损伤的可能机制.
    Matrix Gla protein (MGP) is a small secreted protein and requires vitamin K dependent γ-carboxylation for its function. MGP has been identified as a local inhibitor of vascular calcification because MGP-deficient mice die due to severe arterial calcification and resulting arterial rupture. Clinical trials revealed that reduction in active MGP predicts poor prognosis in patients due to cardiovascular complications. However, recent studies showed that MGP controls angiogenesis during development. MGP-deficient mice demonstrated abnormal hypervascularization and arteriovenous malformations in kidneys and other organs. This abnormal angiogenesis is largely caused by excessive expression of vascular endothelial growth factor-A (VEGF-A) and VEGF receptor-2 (VEGFR2). However, only a few studies have investigated the roles of MGP in tissue injury. We observed mesangial cell proliferation and mild interstitial fibrosis in addition to increased capillaries in kidneys of MGP-null mice even without injury. We also created a mouse model with kidney injury and found that kidney damage greatly increases MGP expression in peritubular capillary endothelial cells and tubular epithelial cells. Finally, our study showed that impairment of MGP expression aggravates peritubular capillary rarefaction and accumulation of collagen-producing myofibroblasts following kidney injury. Peritubular capillary damage induces capillary loss as well as trans-differentiation of vascular pericytes into myofibroblasts. These results indicate that MGP has the vascular protective effect in the injured kidney. Clinical trials have already started to test the efficacy of MGP activation to repair vascular calcification in patients with chronic kidney diseases. In this \"Hypothesis and Theory\" article, we discuss possible mechanisms by which MGP protects against vascular damage during tissue injury based on our experimental results and previous results from other research groups.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

公众号