MXenes

MXenes
  • 文章类型: Journal Article
    实现高性能电磁干扰(EMI)屏蔽膜的挑战,专注于电磁波吸收,同时保持薄的厚度,是当代电子设备发展的一项至关重要的努力。在这项研究中,我们已经成功地设计了基于MXene纳米片和Fe3O4纳米颗粒的混合薄膜,具有复杂的电磁双梯度结构。通过配备过渡层和反射层的独特双梯度结构的协同影响,这些混合薄膜表现出良好的阻抗匹配,丰富的损耗机制(欧姆损耗,界面极化和磁损耗),以及“吸收-反射-再吸收”过程,以实现吸收主导的EMI屏蔽能力。与单导电梯度结构相比,双梯度结构有效增强了单位厚度的吸收强度,从而降低了薄膜的厚度。优化的膜展示了49.98dB的显著EMI屏蔽效能(SE)以及0.51的增强吸收系数(A),厚度仅为180μm。具有双梯度结构的薄膜有望制造以吸收为主的电磁屏蔽材料,突出了先进的电磁保护解决方案的潜力。
    The challenge of achieving high-performance electromagnetic interference (EMI) shielding films, which focuses on electromagnetic waves absorption while maintaining thin thickness, is a crucial endeavor in contemporary electronic device advancement. In this study, we have successfully engineered hybrid films based on MXene nanosheets and Fe3O4 nanoparticles, featuring intricate electric-magnetic dual-gradient structures. Through the collaborative influence of a unique dual-gradient structure equipped with transition and reflection layers, these hybrid films demonstrate favorable impedance matching, abundant loss mechanisms (Ohmic loss, interfacial polarization and magnetic loss), and an \"absorb-reflect-reabsorb\" process to achieve absorption-dominated EMI shielding capability. Compared with the single conductive gradient structure, the dual-gradient structure effectively enhances the absorption intensity per unit thickness, and thus reduces the thickness of the film. The optimized film demonstrates a remarkable EMI shielding effectiveness (SE) of 49.98 dB alongside an enhanced absorption coefficient (A) of 0.51 with a thickness of only 180 μm. The thin films with a dual-gradient structure hold promise for crafting absorption-dominated electromagnetic shielding materials, highlighting the potential for advanced electromagnetic protection solutions.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    单层MXenes是一类新颖的二维过渡金属碳化物/氮化物,具有令人着迷的物理化学性质。尽管MXenes机械性能的研究取得了最新进展,对纳米压痕下MXenes中由于表面终止和空位缺陷而影响断裂的基本物理机制的全面了解仍未被探索。这里,我们使用分子动力学模拟和纳米压痕理论来研究表面终止和空位缺陷对Ti3C2TxMXenes断裂行为的影响。通过纳米压痕诱导单层MXene的破裂,我们发现裸露的Ti3C2表现出脆性断裂行为。表面终端和空位缺陷的存在降低了MXenes的承载能力和柔韧性。有趣的是,表面终端增加了结构的刚度,而空位缺陷具有相反的效果。我们还发现,高浓度的表面氧化会赋予MXenes延性断裂特性,并增加破坏时的最大裂纹长度。此外,超过临界浓度的缺陷可以通过引起频繁的裂纹偏转和钝化裂纹尖端来有效地防止脆性裂纹扩展。结合这些发现,我们提出了一种新策略,通过高浓度的表面氧化和超过临界浓度的空位缺陷协同增强MXenes的断裂韧性,而不会显着影响强度和刚度,从而避免MXene单层由于脆性断裂而导致的灾难性破坏。这项工作提供了对单层MXenes的机械性能和断裂机理的基本见解。
    Monolayer MXenes are a novel class of two-dimensional transition metal carbides/nitrides with fascinating physicochemical properties. Despite recent advances in the study of MXenes\' mechanical properties, a comprehensive understanding of the fundamental physical mechanisms that affect fracture due to surface terminations and vacancy defects in MXenes under nanoindentation remains largely unexplored. Here, we address this gap using molecular dynamics simulations and nanoindentation theory to investigate the effects of surface terminations and vacancy defects on the fracture behavior of Ti3C2Tx MXenes. By inducing the rupture of monolayer MXenes through nanoindentation, we find that bare Ti3C2 exhibits brittle fracture behavior. The presence of surface terminations and vacancy defects reduces the load-carrying capacity and flexibility of MXenes. Interestingly, surface terminations increase the stiffness of the structure, while vacancy defects have the opposite effect. We also find that high concentrations of surface oxidation impart ductile fracture characteristics to MXenes and increase the maximum crack length at failure. Additionally, defects exceeding the critical concentration can effectively prevent brittle crack propagation by causing frequent crack deflection and blunting crack tips. Combining these findings, we propose a new strategy to synergistically enhance the fracture toughness of MXenes through high concentrations of surface oxidation and vacancy defects exceeding the critical concentration without significantly affecting strength and stiffness, thereby avoiding catastrophic failure in MXene monolayers due to brittle fracture. This work provides fundamental insights into the mechanical properties and fracture mechanisms of monolayer MXenes.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    个人医疗保健意识的逐步上升正在加速可穿戴传感器的部署,其获取生理生命体征的能力取决于传感材料。MXenes在可穿戴传感器中与其他2D纳米材料相比具有明显的化学和物理优势。这篇综述全面总结了用于可穿戴物理传感器的基于MXenes的材料的最新进展。它首先介绍了MXenes用于传感性能的特殊结构特征,其次是对多功能功能的深入探索。还包括不同感测机制的详细描述以说明MXenes对感测性能及其改进的贡献。此外,基于MXenes的物理传感器用于监测不同生理体征的实际应用也包括在内。最后叙述了用于可穿戴物理传感器的MXenes基材料的剩余挑战及其有希望的机会,结合未来发展前景。
    The gradual rise of personal healthcare awareness is accelerating the deployment of wearable sensors, whose ability of acquiring physiological vital signs depends on sensing materials. MXenes have distinct chemical and physical superiorities over other 2D nanomaterials for wearable sensors. This review presents a comprehensive summary of the latest advancements in MXenes-based materials for wearable physical sensors. It begins with an introduction to special structural features of MXenes for sensing performance, followed by an in-depth exploration of versatile functionalities. A detailed description of different sensing mechanisms is also included to illustrate the contribution of MXenes to the sensing performance and its improvement. In addition, the real-world applications of MXenes-based physical sensors for monitoring different physiological signs are included as well. The remaining challenges of MXenes-based materials for wearable physical sensors and their promising opportunities are finally narrated, in conjunction with a prospective for future development.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    过量使用呋喃妥因(NFT)对生态系统和食品安全构成威胁,有必要开发高效、准确的检测方法。在这里,通过一步电沉积成功合成了Ru/NiFe-LDH-MXene/SPCE电极,并将其用于NFT电化学传感。将2DMXene与多功能2D层状双氢氧化物(LDH)结合在MXene-LDH异质结构内产生协同相互作用,改善电化学性能。此外,贵金属纳米颗粒和纳米团簇的掺入可以通过促进金属-载体界面的有利相互作用和优化电子结构的重排来显著提高电化学性能。基于此,开发的Ru/NiFe-LDH-MXene/SPCE传感器具有出色的灵敏度(152.44μAμM-1cm-2)和超低的检测限(2.2nM)。值得注意的是,该传感器用于食品样品中的NFT检测,回收率令人满意,使其成为检测NFT的电化学传感器。
    The excessive use of nitrofurantoin (NFT) represents a threat to ecosystems and food safety, making it necessary to develop efficient and accurate detection methods. Herein, the Ru/NiFe-LDH-MXene/SPCE electrode was successfully synthesized by one-step electrodeposition and employed to the NFT electrochemical sensing. Combining 2D MXenes with multifunctional 2D layered double hydroxides (LDHs) creates synergistic interactions within the MXene-LDH heterostructures, modifying the electrochemical performance. Furthermore, the incorporation of noble metal nanoparticles and nanoclusters can significantly enhance electrochemical performance by promoting favorable interactions at the metal-carrier interface and optimizing the rearrangement of electronic structure. Based on this, the developed Ru/NiFe-LDH-MXene/SPCE sensor demonstrates remarkable sensitivity (152.44 μA μM-1 cm-2) and an ultralow detection limit (2.2 nM). Notably, the sensor was employed for NFT detection in food samples with satisfactory recoveries, making it a promising electrochemical sensor for the detection of NFT.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    近年来,电化学发光(ECL)传感系统的普及程度激增,在传感和生物传感应用方面取得重大进展。高通量ECL传感器的实现取决于新型信号放大策略的实现。推动该领域进入超灵敏分析的新时代。开发先进的ECL传感器和生物传感器的关键策略涉及利用具有卓越性能的新型结构。过去几年见证了MXenes作为一种迷人的2D材料的出现,其独特的性能导致开发在不同的应用。这篇综述全面总结了专门用于ECL传感和生物传感应用的MXene改性材料的最新进展。我们彻底分析了结构,表面功能化,以及MXenes的固有特性,使其非常适合开发高灵敏度的ECL传感器和生物传感器。此外,本研究探讨了MXenes在ECL传感中的广泛应用,详细介绍了它们在提高ECL(生物)传感器的性能和灵敏度方面的多方面作用。通过提供全面的概述,预计这项审查将促进相关领域的进展。
    Electrochemiluminescence (ECL) sensing systems have surged in popularity in recent years, making significant strides in sensing and biosensing applications. The realization of high-throughput ECL sensors hinges on the implementation of novel signal amplification strategies, propelling the field toward a new era of ultrasensitive analysis. A key strategy for developing advanced ECL sensors and biosensors involves utilizing novel structures with remarkable properties. The past few years have witnessed the emergence of MXenes as a captivating class of 2D materials, with their unique properties leading to exploitation in diverse applications. This review provides a comprehensive summary of the latest advancements in MXene-modified materials specifically engineered for ECL sensing and biosensing applications. We thoroughly analyze the structure, surface functionalization, and intrinsic properties of MXenes that render them exceptionally suitable candidates for the development of highly sensitive ECL sensors and biosensors. Furthermore, this study explores the broad spectrum of applications of MXenes in ECL sensing, detailing their multifaceted roles in enhancing the performance and sensitivity of ECL (bio)sensors. By providing a comprehensive overview, this review is expected to promote progress in related areas.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    介绍MXenes(Ti3C2)代表一组二维无机化合物,通过自上而下的去角质方法生产的。它们包括超薄层的过渡金属碳化物,或者碳氮化物,并在其表面表现出亲水特性。利用Ti3C2BiOCl纳米颗粒的抗菌和抗氧化特性涉及增强合成,processing,和表征技术。材料和方法制备Ti3C2MXene,将1.6g的LiF溶解在20ml的9MHCl中。在搅拌的同时向溶液中缓慢加入1克Ti3AlC2(碳化钛铝)粉末。在35°C下蚀刻24小时以从Ti3AlC2去除Al层,留下Ti3C2层。用蒸馏水和乙醇洗涤混合物直到pH为约6。通过离心收集洗涤的沉淀物,并将其在蒸馏水中超声处理1小时。离心以除去未剥落的颗粒。对于BiOCl合成,将2mmol的Bi(NO3)3·5H2O(硝酸铋五水合物)与0.5g的PVP(聚乙烯吡咯烷酮)一起溶解在10ml的2MHCl(盐酸)中。将溶液转移到Teflon衬里的高压釜中,用高达80%的蒸馏水填充它,并在160°C加热24小时。通过离心收集沉淀物,wash,并在60°C下干燥12小时。将BiOCl纳米颗粒分散在蒸馏水中,超声处理30分钟,添加Ti3C2MXene分散体,搅拌2小时,收集,wash,干,并在400°C下煅烧2小时。结果扫描电子显微镜(SEM)利用电子,而不是光,生成高度放大的图像。能量色散X射线光谱(EDS)通过分析固体样品受到电子轰击时发出的X射线光谱来补充SEM,实现局部化学分析。在SEM成像中,结合X射线光谱仪允许元素映射和点分析。所制备样品的SEM图像显示了BiOCl中手风琴状多层结构,具有许多孔隙的薄片状结构。EDS,依靠电子轰击的X射线发射,有助于在样品中的特定位置进行详细的化学分析。结论我们的研究揭示了二维Ti3C2BiOCl纳米粒子的合成和表征过程,揭示了他们显着的抗菌和抗氧化性能。
    Introduction  MXenes (Ti3C2) represent a group of two-dimensional inorganic compounds, produced through a top-down exfoliation method. They comprise ultra-thin layers of transition metal carbides, or carbonitrides, and exhibit hydrophilic properties on their surfaces. Utilizing Ti3C2 BiOCl nanoparticles for their antimicrobial and antioxidant attributes involves enhancing synthesis, processing, and characterization techniques. Materials and method  To prepare Ti3C2 MXene, dissolve 1.6 g of LiF in 20 ml of 9M HCl. Slowly add 1 g of Ti3AlC2 (titanium aluminum carbide) powder to the solution while stirring. Etch at 35°C for 24 h to remove Al layers from Ti3AlC2, leaving Ti3C2 layers. Wash the mixture with distilled water and ethanol until the pH is around 6. Collect the washed sediment by centrifugation and sonicate it in distilled water for 1 h. Centrifuge to remove unexfoliated particles. For BiOCl synthesis, dissolve 2 mmol of Bi(NO3)3·5H2O (bismuth nitrate pentahydrate) in 10 ml of 2M HCl (hydrochloric acid) with 0.5 g of PVP (polyvinylpyrrolidone). Transfer the solution to a Teflon-lined autoclave, fill it with distilled water up to 80%, and heat at 160°C for 24 h. Collect the precipitate by centrifugation, wash, and dry at 60°C for 12 h. Disperse BiOCl nanoparticles in distilled water, sonicate for 30 min, add Ti3C2 MXene dispersion, stir for 2 h, collect, wash, dry, and calcine at 400°C for 2 h. Result  The Scanning Electron Microscope (SEM) utilizes electrons, rather than light, to generate highly magnified images. Energy Dispersive X-ray Spectroscopy (EDS) complements SEM by analyzing the X-ray spectrum emitted when a solid sample is bombarded with electrons, enabling localized chemical analysis. In SEM imaging, incorporating an X-ray spectrometer allows for both element mapping and point analysis. The SEM image of the prepared samples reveals accordion-like multilayer structures in BiOCl, characterized by thin sheet-like structures with numerous pores. EDS, relying on X-ray emissions from electron bombardment, facilitates detailed chemical analysis at specific locations within the sample.  Conclusion  Our research has shed light on the synthesis and characterization processes of two-dimensional Ti3C2 BiOCl nanoparticles, revealing their remarkable antimicrobial and antioxidant properties.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    越来越需要通过电化学和显微镜/光谱学表征单个实体的相关方法来阐明纳米材料的结构-功能关系。然而,技术限制通常根据要组合应用的表征技术而有所不同。相关单实体电化学(SEE)的基石之一是基底,这需要实现高电导率,低粗糙度,和电化学惰性。这项工作表明,石墨化的溅射碳薄膜构成了SEE的优异电极,同时能够用扫描探针进行表征,光学,电子,和X光显微镜检查.使用纳米粒子的三种不同的相关SEE实验,纳米立方体,和2DTi3C2TxMXene材料被报道以说明使用碳薄膜基底进行SEE表征的潜力。通过显示电化学氧化的Ti3C2TxMXene显示化学键合和电解质离子分布的变化,进一步证明了SEE相关策略的优势和独特能力。
    Correlative methods to characterize single entities by electrochemistry and microscopy/spectroscopy are increasingly needed to elucidate structure-function relationships of nanomaterials. However, the technical constraints often differ depending on the characterization techniques to be applied in combination. One of the cornerstones of correlative single-entity electrochemistry (SEE) is the substrate, which needs to achieve a high conductivity, low roughness, and electrochemical inertness. This work shows that graphitized sputtered carbon thin films constitute excellent electrodes for SEE while enabling characterization with scanning probe, optical, electron, and X-ray microscopies. Three different correlative SEE experiments using nanoparticles, nanocubes, and 2D Ti3C2Tx MXene materials are reported to illustrate the potential of using carbon thin film substrates for SEE characterization. The advantages and unique capabilities of SEE correlative strategies are further demonstrated by showing that electrochemically oxidized Ti3C2Tx MXene display changes in chemical bonding and electrolyte ion distribution.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    多价离子电池作为传统锂离子电池的有希望的替代品,由于其较高的电荷密度和可持续储能解决方案的潜力,已经引起了极大的关注。然而,多价离子的缓慢扩散是多价离子电池电极材料的主要问题。在这次审查中,探索了MXene基材料在多价离子电池应用中的适用性,聚焦洋葱,如镁(Mg2+),铝(Al3+),锌(Zn2+),和超越。MXene的独特结构提供了大的层间间距和丰富的表面官能团,有利于有效的离子嵌入和扩散,使其成为具有优异的比容量和功率密度的多价离子电池电极的优异候选物。总结和讨论了MXene合成和增强其电化学性能的工程技术的最新进展。MXenes的多功能性及其利用多种多价离子的能力,这篇评论强调了基于MXene的材料在彻底改变多价离子电池领域方面的广阔前景。
    Multivalent-ion batteries have garnered significant attention as promising alternatives to traditional lithium-ion batteries due to their higher charge density and potential for sustainable energy storage solutions. Nevertheless, the slow diffusion of multivalent ions is the primary issue with electrode materials for multivalent-ion batteries. In this review, the suitability of MXene-based materials for multivalent-ion batteries applications is explored, focusing onions such as magnesium (Mg2+), aluminum (Al3+), zinc (Zn2+), and beyond. The unique structure of MXene offers large interlayer spacing and abundant surface functional groups that facilitates efficient ion intercalation and diffusion, making it an excellent candidate for multivalent-ion batteries electrodes with excellent specific capacity and power density. The latest advancements in MXene synthesis and engineering techniques to enhance its electrochemical performance have been summarized and discussed. With the versatility of MXenes and their ability to harness diverse multivalent ions, this review underscores the promising future of MXene-based materials in revolutionizing the landscape of multivalent-ion batteries.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    金属有机骨架(MOFs)和MXenes在先进材料研究的队列中占有重要地位。这两种材料突出的物理和化学特性突出地促进了它们在不同领域的利用,尤其是电化学储能(EES)领域。极高的比表面积(SSA)的集体贡献,可定制的毛孔,和丰富的活性位点提出MOFs作为EES设备的整体材料。然而,传统的MOFs承受低电导率,限制了它们在实际应用中的效用。通过将MOFs与各种导电材料集成在一起开发混合材料是提高MOF导电性的有效途径。MXenes,配制为过渡金属的二维(2D)碳化物和氮化物,属于最新的2D材料类别。MXenes具有广泛的结构多样性,令人印象深刻的导电性,和丰富的表面化学特性。MOF@MXene杂化的电化学特性分别优于MOF和MXenes,归功于这两个组成部分的协同作用。此外,与MXene偶联的MOF衍生物,表现出独特的形态,表现出优异的电化学性能。MOF@MXene杂种的重要属性,包括各种合成方案,在这篇综述中进行了总结。这篇综述深入研究了MOF和MXenes的架构分析,以及他们先进的混合动力车。此外,对MOF@MXene杂化作为超级电容器(SC)的电活性材料的最新进展的全面调查是这篇综述的主要目标。本综述最后详细讨论了当前面临的挑战以及优化MOF@MXene复合材料的未来前景。
    Metal-organic frameworks (MOFs) and MXenes have gained prominence in the queue of advanced material research. Both materials\' outstanding physical and chemical characteristics prominently promote their utilization in diverse fields, especially the electrochemical energy storage (EES) domain. The collective contribution of extremely high specific surface area (SSA), customizable pores, and abundant active sites propose MOFs as integral materials for EES devices. However, conventional MOFs endure low conductivity, constraining their utility in practical applications. The development of hybrid materials via integrating MOFs with various conductive materials stands out as an effective approach to improvising MOF\'s conductivity. MXenes, formulated as two-dimensional (2D) carbides and nitrides of transition metals, fall in the category of the latest 2D materials. MXenes possess extensive structural diversity, impressive conductivity, and rich surface chemical characteristics. The electrochemical characteristics of MOF@MXene hybrids outperform MOFs and MXenes individually, credited to the synergistic effect of both components. Additionally, the MOF derivatives coupled with MXene, exhibiting unique morphologies, demonstrate outstanding electrochemical performance. The important attributes of MOF@MXene hybrids, including the various synthesis protocols, have been summarized in this review. This review delves into the architectural analysis of both MOFs and MXenes, along with their advanced hybrids. Furthermore, the comprehensive survey of the latest advancements in MOF@MXene hybrids as electroactive material for supercapacitors (SCs) is the prime objective of this review. The review concludes with an elaborate discussion of the current challenges faced and the future outlooks for optimizing MOF@MXene composites.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    MXenes是二维(2D)过渡金属基碳化物,氮化物,和由其前体MAX相合成的碳氮化物。从MAX相选择性蚀刻“A”产生多功能MXenes,在广泛的基于能源的应用和生物医学应用中具有希望。根据其预期应用,MXenes被制备为多层片材,单层薄片,和量子点。传统上,MXenes是使用氢氟酸(HF)酸蚀刻制备的;但是,HF的使用阻碍了其在生物医学应用中的有效使用。这要求使用无毒的无HF合成方案来制备对生物使用安全的MXenes。因此,我们已经讨论了合成生物相容性的过程,无HF的MXene纳米片和量子点。
    MXenes are two-dimensional (2D) transition metal-based carbides, nitrides, and carbonitrides that are synthesized from its precursor MAX phase. The selective etching of the \"A\" from the MAX phase yields multi-functional MXenes that hold promise in a wide range of energy-based applications and biomedical applications. Based on its intended application, MXenes are prepared as multilayered sheets, monolayer flakes, and quantum dots. Conventionally, MXenes are prepared using hydrofluoric (HF) acid etching; however, the use of HF impedes its effective use in biomedical applications. This calls for the use of nontoxic HF-free synthesis protocols to prepare MXenes safe for biological use. Therefore, we have discussed a facile process to synthesize biocompatible, HF-free MXene nanosheets and quantum dots.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

公众号