MT: RNA/DNA Editing

MT: RNA / DNA 编辑
  • 文章类型: Journal Article
    成簇的规则间隔短回文重复序列(CRISPR)-Cas13d系统被调整为靶向病毒RNA序列的强大工具,使其成为抗病毒策略的有希望的方法。了解模板RNA结构对Cas13d结合和切割效率的影响对于优化其治疗潜力至关重要。在这项研究中,我们研究了局部RNA二级结构对Cas13d活性的影响。要做到这一点,我们改变了含有严重急性呼吸综合征冠状病毒2(SARS-CoV-2)靶序列的发夹结构的稳定性,允许我们确定Cas13d活性受到影响的阈值RNA稳定性。我们的结果表明,Cas13d具有有效结合和切割高度稳定的RNA结构的能力。值得注意的是,我们仅在具有完全碱基配对茎的异常稳定的RNA发夹的情况下观察到Cas13d活性降低,在天然RNA分子中很少遇到。Cas13d和RNA干扰(RNAi)介导的相同RNA靶标的切割的比较表明,RNAi比Cas13d对局部靶标RNA结构更敏感。这些结果强调了CRISPR-Cas13d系统用于靶向具有高度结构化RNA基因组的病毒的适用性。
    The clustered regularly interspaced short palindromic repeats (CRISPR)-Cas13d system was adapted as a powerful tool for targeting viral RNA sequences, making it a promising approach for antiviral strategies. Understanding the influence of template RNA structure on Cas13d binding and cleavage efficiency is crucial for optimizing its therapeutic potential. In this study, we investigated the effect of local RNA secondary structure on Cas13d activity. To do so, we varied the stability of a hairpin structure containing the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) target sequence, allowing us to determine the threshold RNA stability at which Cas13d activity is affected. Our results demonstrate that Cas13d possesses the ability to effectively bind and cleave highly stable RNA structures. Notably, we only observed a decrease in Cas13d activity in the case of exceptionally stable RNA hairpins with completely base-paired stems, which are rarely encountered in natural RNA molecules. A comparison of Cas13d and RNA interference (RNAi)-mediated cleavage of the same RNA targets demonstrated that RNAi is more sensitive for local target RNA structures than Cas13d. These results underscore the suitability of the CRISPR-Cas13d system for targeting viruses with highly structured RNA genomes.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    尽管我们对单纯疱疹病毒1型(HSV-1)生物学的理解已大大提高,制定治疗策略以消除潜伏感染个体中的HSV-1仍然是一个公共卫生问题.目前用于治疗HSV-1并发症的抗病毒药物没有特异性,也不能解决潜伏感染。我们最近开发了一个基于CRISPR-Cas9的基因编辑平台,以特异性靶向HSV-1基因组。在这项研究中,我们进一步使用2DVero细胞培养和3D人类诱导多能干细胞来源的脑类器官(CO)模型来评估我们针对病毒ICP0或ICP27基因的编辑构建体的有效性.我们发现,在Vero细胞中用AAV2-CRISPR-Cas9载体靶向ICP0或ICP27基因可显著抑制HSV-1复制。此外,我们用HSV-1生产性感染COs,表征病毒复制动力学,建立了病毒潜伏期模型。最后,我们发现,靶向ICP0或ICP27的AAV2-CRISPR-Cas9载体显著降低HSV-1潜伏感染的COs中的病毒反弹.总之,我们的结果表明,CRISPR-Cas9基因编辑HSV-1是消除潜伏病毒库和治疗HSV-1相关并发症的有效治疗方法.
    Although our understanding of herpes simplex virus type 1 (HSV-1) biology has been considerably enhanced, developing therapeutic strategies to eliminate HSV-1 in latently infected individuals remains a public health concern. Current antiviral drugs used for the treatment of HSV-1 complications are not specific and do not address latent infection. We recently developed a CRISPR-Cas9-based gene editing platform to specifically target the HSV-1 genome. In this study, we further used 2D Vero cell culture and 3D human induced pluripotent stem cell-derived cerebral organoid (CO) models to assess the effectiveness of our editing constructs targeting viral ICP0 or ICP27 genes. We found that targeting the ICP0 or ICP27 genes with AAV2-CRISPR-Cas9 vectors in Vero cells drastically suppressed HSV-1 replication. In addition, we productively infected COs with HSV-1, characterized the viral replication kinetics, and established a viral latency model. Finally, we discovered that ICP0- or ICP27-targeting AAV2-CRISPR-Cas9 vector significantly reduced viral rebound in the COs that were latently infected with HSV-1. In summary, our results suggest that CRISPR-Cas9 gene editing of HSV-1 is an efficient therapeutic approach to eliminate the latent viral reservoir and treat HSV-1-associated complications.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    等位基因特异性基因编辑工具的应用可以扩展显性遗传条件的治疗选择,无论是通过基因校正或通过等位基因失活的情况下,单倍体功能不全是可以容忍的。这里,我们使用等位基因靶向的CRISPR-Cas9指导RNA(gRNA)在COL6A1基因中的SNV处引入失活移码indel(c.868G>A;G290R),一种作为显性阴性的变体,与严重的先天性肌营养不良有关。我们表达了SpCas9和等位基因靶向的gRNA,不提供修复模板,在来自四名患者和一名对照受试者的原代成纤维细胞中。测试的两个gRNA的扩增子深度测序显示,单核苷酸缺失占引入的indel的大部分。虽然两个gRNA的活性在G290R等位基因上更大,两种gRNA在野生型等位基因上也有活性.为了增强等位基因选择性,我们对一个gRNA引入了有意的额外错配。这些优化的gRNA之一在WT等位基因上显示出最小的活性,同时在培养的患者成纤维细胞中产生生产性编辑并改善胶原蛋白VI基质。这项研究加强了基因编辑治疗显性阴性疾病的潜力,但也强调了用gRNA实现等位基因选择性的挑战。
    The application of allele-specific gene editing tools can expand the therapeutic options for dominant genetic conditions, either via gene correction or via allelic gene inactivation in situations where haploinsufficiency is tolerated. Here, we used allele-targeted CRISPR-Cas9 guide RNAs (gRNAs) to introduce inactivating frameshifting indels at an SNV in the COL6A1 gene (c.868G>A; G290R), a variant that acts as dominant negative and that is associated with a severe form of congenital muscular dystrophy. We expressed SpCas9 along with allele-targeted gRNAs, without providing a repair template, in primary fibroblasts derived from four patients and one control subject. Amplicon deep sequencing for two gRNAs tested showed that single-nucleotide deletions accounted for the majority of indels introduced. While activity of the two gRNAs was greater at the G290R allele, both gRNAs were also active at the wild-type allele. To enhance allele selectivity, we introduced deliberate additional mismatches to one gRNA. One of these optimized gRNAs showed minimal activity at the WT allele, while generating productive edits and improving collagen VI matrix in cultured patient fibroblasts. This study strengthens the potential of gene editing to treat dominant-negative disorders, but also underscores the challenges in achieving allele selectivity with gRNAs.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    CRISPR-Cas9已成为基因组编辑的强大工具。然而,Cas9基因组编辑面临挑战包括低效率和脱靶效应。这里,我们报道了与RAD51联合治疗,RAD51是同源重组的关键因素,和SCR7,一种DNA连接酶IV小分子抑制剂,增强CRISPR-Cas9介导的人胚肾293T和人诱导多能干细胞的基因组编辑效率,通过细胞透射电子显微镜和功能分析证实。首先,我们的发现揭示了RAD51在同源重组(HR)介导的DNA修复过程中的关键作用。外源性RAD51水平的升高通过单链DNA缺口修复过程促进复制后的步骤,确保完成DNA复制。第二,使用一体化CRISPR-Cas9-RAD51系统,高表达的RAD51通过与SCR7协同激活基于HR的修复途径,提高了多个内源性基因敲入/敲除效率和插入/缺失(InDel)突变.Sanger测序显示RAD51-SCR7在多个基因组位点中的InDel突变比率中的不同结果。第三,RAD51-SCR7组合可以通过增强HR过程诱导有效的R环分辨率和DNA修复,这导致DNA复制停滞,因此有利于基于CRISPR-Cas9的稳定基因组编辑。我们的研究表明,通过RAD51和SCR7提高CRISPR-Cas9效率,在基因组编辑中具有广阔的应用前景,为生物技术和治疗提供了潜在的进步。
    CRISPR-Cas9 has emerged as a powerful tool for genome editing. However, Cas9 genome editing faces challenges, including low efficiency and off-target effects. Here, we report that combined treatment with RAD51, a key factor in homologous recombination, and SCR7, a DNA ligase IV small-molecule inhibitor, enhances CRISPR-Cas9-mediated genome-editing efficiency in human embryonic kidney 293T and human induced pluripotent stem cells, as confirmed by cyro- transmission electron microscopy and functional analyses. First, our findings reveal the crucial role of RAD51 in homologous recombination (HR)-mediated DNA repair process. Elevated levels of exogenous RAD51 promote a post-replication step via single-strand DNA gap repair process, ensuring the completion of DNA replication. Second, using the all-in-one CRISPR-Cas9-RAD51 system, highly expressed RAD51 improved the multiple endogenous gene knockin/knockout efficiency and insertion/deletion (InDel) mutation by activating the HR-based repair pathway in concert with SCR7. Sanger sequencing shows distinct outcomes for RAD51-SCR7 in the ratio of InDel mutations in multiple genome sites. Third, RAD51-SCR7 combination can induce efficient R-loop resolution and DNA repair by enhanced HR process, which leads to DNA replication stalling and thus is advantageous to CRISPR-Cas9-based stable genome editing. Our study suggests promising applications in genome editing by enhancing CRISPR-Cas9 efficiency through RAD51 and SCR7, offering potential advancements in biotechnology and therapeutics.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    在RYR1基因中已鉴定出700多种致病性或可能的致病性变异,导致各种肌病,统称为“RYR1相关肌病”。“这些肌病没有治疗方法,基因治疗是最有前途的方法之一。在由RYR1突变引起的中枢核心疾病的显性形式的背景下,我们旨在通过将CRISPR-Cas9切割引导到同一染色体上分离的频繁单核苷酸多态性(SNP)上,来显示特异性失活突变的RYR1等位基因的功能益处.使用全基因组测序来精确定位在突变RYR1等位基因上的SNP并鉴定特异性CRISPR-Cas9指导RNA。编码这些指导RNA和SpCas9核酸酶的慢病毒用于转导永生化患者成肌细胞,诱导突变RYR1等位基因的特异性缺失。在DNA和RNA水平上评估缺失的效率,并在监测RyR1通道刺激诱导的钙释放后处于功能水平。这项研究提供了关于突变RYR1等位基因缺失的益处的概念证明,在显性RYR1突变的情况下,从分子和功能的角度来看,并且可能适用于所有RYR1突变患者的20%。
    More than 700 pathogenic or probably pathogenic variations have been identified in the RYR1 gene causing various myopathies collectively known as \"RYR1-related myopathies.\" There is no treatment for these myopathies, and gene therapy stands out as one of the most promising approaches. In the context of a dominant form of central core disease due to a RYR1 mutation, we aimed at showing the functional benefit of inactivating specifically the mutated RYR1 allele by guiding CRISPR-Cas9 cleavages onto frequent single-nucleotide polymorphisms (SNPs) segregating on the same chromosome. Whole-genome sequencing was used to pinpoint SNPs localized on the mutant RYR1 allele and identified specific CRISPR-Cas9 guide RNAs. Lentiviruses encoding these guide RNAs and the SpCas9 nuclease were used to transduce immortalized patient myoblasts, inducing the specific deletion of the mutant RYR1 allele. The efficiency of the deletion was assessed at DNA and RNA levels, and at the functional level after monitoring calcium release induced by the stimulation of the RyR1-channel. This study provides in cellulo proof of concept regarding the benefits of mutant RYR1 allele deletion, in the case of a dominant RYR1 mutation, from both a molecular and functional perspective, and could apply potentially to 20% of all patients with a RYR1 mutation.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    超过30,000个点突变与使人衰弱的疾病相关,包括许多癌症类型,强调了对靶向基因组解决方案的关键需求。CRISPR基础编辑,如腺嘌呤碱基编辑器(ABE)和胞嘧啶碱基编辑器(CBE),通过将腺嘌呤转化为鸟嘌呤和胞嘧啶转化为胸腺嘧啶来实现精确修饰,分别。关于用于递送的病毒载体的效率和安全性方面的挑战限制了碱基编辑的范围。这项研究引入了非病毒小圆,无细菌骨架的质粒,作为ABE和CBE的交付工具。该研究使用带有“基因开启”(GO)报告基因系统的细胞来追踪微环传递的ABE,CBE,或Cas9切口酶(对照),使用绿色荧光蛋白(GFPGO),生物发光报告萤火虫荧光素酶(LUCGO),或在本研究中设计的高度敏感的Akaluciferase(AkalucGO)。结果表明,转染表达CBE或ABE的小圆导致GFP表达和发光信号明显高于对照,微型轨道展示了最实质性的编辑。这项研究提出了微圈作为基础编辑器交付的新策略,并开发了一种用于跟踪ABE活动的增强型生物发光成像报告系统。未来的研究旨在评估微圈在临床前癌症模型中的应用,促进潜在的临床应用。
    Over 30,000 point mutations are associated with debilitating diseases, including many cancer types, underscoring a critical need for targeted genomic solutions. CRISPR base editors, like adenine base editors (ABEs) and cytosine base editors (CBEs), enable precise modifications by converting adenine to guanine and cytosine to thymine, respectively. Challenges in efficiency and safety concerns regarding viral vectors used in delivery limit the scope of base editing. This study introduces non-viral minicircles, bacterial-backbone-free plasmids, as a delivery vehicle for ABEs and CBEs. The research uses cells engineered with the \"Gene On\" (GO) reporter gene systems for tracking minicircle-delivered ABEs, CBEs, or Cas9 nickase (control), using green fluorescent protein (GFPGO), bioluminescence reporter firefly luciferase (LUCGO), or a highly sensitive Akaluciferase (AkalucGO) designed in this study. The results show that transfection of minicircles expressing CBE or ABE resulted in significantly higher GFP expression and luminescence signals over controls, with minicircles demonstrating the most substantial editing. This study presents minicircles as a new strategy for base editor delivery and develops an enhanced bioluminescence imaging reporter system for tracking ABE activity. Future studies aim to evaluate the use of minicircles in preclinical cancer models, facilitating potential clinical applications.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    杜氏肌营养不良症(DMD)是一种遗传性神经肌肉疾病。虽然会导致肌肉无力,受影响的个体主要死于心肌病,仍然无法治愈。越来越多的证据表明,过度表达的肌萎缩素可能会抵消DMD的一些病理生理结果。这项研究的目的是研究肌养蛋白在缺乏肌养蛋白的人心肌细胞(CMs)中的作用,并测试是否过度表达通过CRISPR-deadCas9-VP64系统实施,可以改善他们的表型。我们使用了缺乏肌养蛋白(DMD)或缺乏肌养蛋白和肌养蛋白(DMDKO/UTRN(/-))的人诱导多能干细胞衍生的心肌细胞(hiPSC-CM)。我们进行了蛋白质组分析,这揭示了与肌肉收缩相关的蛋白质的相当大的差异,细胞-细胞粘附,和细胞外基质组织。此外,我们使用原子力显微镜评估了在维持DMDhiPSC-CM的生理特性中的作用,膜片钳,和Ca2+振荡分析。我们的结果表明,DMD中超极化后的值较高,胞质Ca2振荡的模式发生了改变;后者在DMDKO/UTRN(/-)hiPSC-CM中进一步受到干扰。Utrophin上调改善了这两个参数。我们的研究结果首次表明,肌萎缩素维持DMDhiPSC-CM的生理功能,并且它的上调可以补偿肌萎缩蛋白的损失。
    Duchenne muscular dystrophy (DMD) is a genetic neuromuscular disease. Although it leads to muscle weakness, affected individuals predominantly die from cardiomyopathy, which remains uncurable. Accumulating evidence suggests that an overexpression of utrophin may counteract some of the pathophysiological outcomes of DMD. The aim of this study was to investigate the role of utrophin in dystrophin-deficient human cardiomyocytes (CMs) and to test whether an overexpression of utrophin, implemented via the CRISPR-deadCas9-VP64 system, can improve their phenotype. We used human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) lacking either dystrophin (DMD) or both dystrophin and utrophin (DMD KO/UTRN(+/-)). We carried out proteome analysis, which revealed considerable differences in the proteins related to muscle contraction, cell-cell adhesion, and extracellular matrix organization. Furthermore, we evaluated the role of utrophin in maintaining the physiological properties of DMD hiPSC-CMs using atomic force microscopy, patch-clamp, and Ca2+ oscillation analysis. Our results showed higher values of afterhyperpolarization and altered patterns of cytosolic Ca2+ oscillations in DMD; the latter was further disturbed in DMD KO/UTRN(+/-) hiPSC-CMs. Utrophin upregulation improved both parameters. Our findings demonstrate for the first time that utrophin maintains the physiological functions of DMD hiPSC-CMs, and that its upregulation can compensate for the loss of dystrophin.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    CRISPR-Cas在赋予细菌和古细菌免疫力方面的固有性质已被重新用于对抗哺乳动物和植物细胞中的病原体。在这方面,CRISPR-Cas13系统已经证明了它们在单链RNA病毒靶向方面的巨大潜力。这里,将不同类型的Cas13直向同源物应用于击倒口蹄疫病毒(FMDV),一种种类繁多的高度传染性疾病,具有遗传多样性的菌株,并且在地理上分布广泛。使用能够靶向病毒基因组保守区的可编程CRISPRRNA,来自CRISPR系统VI型(A/B/D亚型)的所有Cas13s都可以全面靶向和抑制不同血清型的FMDV病毒。这种方法具有破坏作为基因组超保守区域靶标的所有病毒株的潜力。我们通过根据我们开发的评分系统设计最有效的短发夹RNA,实验比较了CRISPR和RNAi的沉默效率,并观察到了可比的结果。这项研究表明,成功使用各种Cas13酶抑制FMDV,这提供了一个灵活的策略来对抗其他动物传染性RNA病毒,生物技术领域的不发达领域。
    The intrinsic nature of CRISPR-Cas in conferring immunity to bacteria and archaea has been repurposed to combat pathogenic agents in mammalian and plant cells. In this regard, CRISPR-Cas13 systems have proved their remarkable potential for single-strand RNA viruses targeting. Here, different types of Cas13 orthologs were applied to knockdown foot-and-mouth disease virus (FMDV), a highly contagious disease of a wide variety of species with genetically diverse strains and is widely geographically distributed. Using programmable CRISPR RNAs capable of targeting conserved regions of the viral genome, all Cas13s from CRISPR system type VI (subtype A/B/D) could comprehensively target and repress different serotypes of FMDV virus. This approach has the potential to destroy all strains of a virus as targets the ultra-conserved regions of genome. We experimentally compared the silencing efficiency of CRISPR and RNAi by designing the most effective short hairpin RNAs according to our developed scoring system and observed comparable results. This study showed successful usage of various Cas13 enzymes for suppression of FMDV, which provides a flexible strategy to battle with other animal infectious RNA viruses, an underdeveloped field in the biotechnology scope.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    CRISPR-Cas9技术用于体细胞突变大缺失的临床应用效率低下,和提高效用的方法受到我们无法快速评估单一和双等位基因缺失。在这里,我们建立了一个模型系统,用于研究单细胞水平的等位基因异质性,并从gRNA切割位点的非同时核酸酶活性鉴定indel瘢痕形成,作为体外和体内CRISPR-del功效的主要障碍。我们表明,通过诱导型腺相关病毒(AAV)或脂质纳米颗粒(LNP)限制CRISPR-Cas9表达,部分阻止了非同时核酸酶活性。CRISPR-del机制的基于AAV的诱导型表达显着提高了体内单等位基因和双等位基因缺失频率,支持Xon盒相对于传统组成型表达AAV方法的使用。这些数据描述了CRISPR-del后对等位基因异质性的改善和洞察力,将为需要大的单等位基因或双等位基因缺失的表型的治疗方法提供信息。例如常染色体隐性遗传疾病或突变等位基因特异性gRNA不易获得,或在用于切除的靶向序列多次位于基因组中的情况下。
    Clinical application of CRISPR-Cas9 technology for large deletions of somatic mutations is inefficient, and methods to improve utility suffer from our inability to rapidly assess mono- vs. biallelic deletions. Here we establish a model system for investigating allelic heterogeneity at the single-cell level and identify indel scarring from non-simultaneous nuclease activity at gRNA cut sites as a major barrier to CRISPR-del efficacy both in vitro and in vivo. We show that non-simultaneous nuclease activity is partially prevented via restriction of CRISPR-Cas9 expression via inducible adeno-associated viruses (AAVs) or lipid nanoparticles (LNPs). Inducible AAV-based expression of CRISPR-del machinery significantly improved mono- and biallelic deletion frequency in vivo, supporting the use of the Xon cassette over traditional constitutively expressing AAV approaches. These data depicting improvements to deletions and insight into allelic heterogeneity after CRISPR-del will inform therapeutic approaches for phenotypes that require either large mono- or biallelic deletions, such as autosomal recessive diseases or where mutant allele-specific gRNAs are not readily available, or in situations where the targeted sequence for excision is located multiple times in a genome.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    p47phox缺陷型慢性肉芽肿病(p47-CGD)是由中性粒细胞胞质因子1(NCF1)基因突变引起的原发性免疫缺陷,导致吞噬细胞中NADPH氧化酶功能缺陷。由于其复杂的基因组背景,NCF1基因座不适合使用当前的基因组编辑技术进行安全的基因编辑。因此,我们通过CRISPR-Cas9核糖核蛋白和病毒载体模板递送开发了靶向NCF1编码序列敲入,在内源性NCF2基因座的控制下恢复p47phox表达。NCF2编码p67phox,一种与p47phox紧密相互作用并主要在骨髓细胞中表达的NADPH氧化酶亚基。这种方法恢复了p47-CGD患者造血干细胞和祖细胞(HSPCs)和p47phox缺陷型小鼠HSPCs中p47phox的表达和NADPH氧化酶的功能,转基因表达遵循髓样分化模式。腺相关病毒载体在模板递送方面优于整合缺陷的慢病毒载体,在HSPC中具有更少的脱靶整合和更高的校正功效。这种针对骨髓的基因编辑有望用于临床CGD基因治疗。因为它导致p47phox和p67phox的共表达,确保骨髓细胞中的时空和近生理转基因表达。
    p47 phox -deficient chronic granulomatous disease (p47-CGD) is a primary immunodeficiency caused by mutations in the neutrophil cytosolic factor 1 (NCF1) gene, resulting in defective NADPH oxidase function in phagocytes. Due to its complex genomic context, the NCF1 locus is not suited for safe gene editing with current genome editing technologies. Therefore, we developed a targeted NCF1 coding sequence knock-in by CRISPR-Cas9 ribonucleoprotein and viral vector template delivery, to restore p47 phox expression under the control of the endogenous NCF2 locus. NCF2 encodes for p67 phox , an NADPH oxidase subunit that closely interacts with p47 phox and is predominantly expressed in myeloid cells. This approach restored p47 phox expression and NADPH oxidase function in p47-CGD patient hematopoietic stem and progenitor cells (HSPCs) and in p47 phox -deficient mouse HSPCs, with the transgene expression following a myeloid differentiation pattern. Adeno-associated viral vectors performed favorably over integration-deficient lentiviral vectors for template delivery, with fewer off-target integrations and higher correction efficacy in HSPCs. Such myeloid-directed gene editing is promising for clinical CGD gene therapy, as it leads to the co-expression of p47 phox and p67 phox , ensuring spatiotemporal and near-physiological transgene expression in myeloid cells.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

公众号