MT: RNA/DNA Editing

MT: RNA / DNA 编辑
  • 文章类型: Journal Article
    腺相关病毒(AAV)是一种相对安全有效的基因治疗载体。然而,由于其4.7kb的货物限制,SpCas9介导的碱基编辑器不能包装到单个AAV载体中,这阻碍了它们的临床应用。开发高效的微型基础编辑器成为迫切需要。Un1Cas12f1是一种II类V-F型CRISPR-Cas蛋白,只有529个氨基酸。尽管Un1Cas12f1已被设计为哺乳动物细胞的基础编辑器,基础编辑效率不到10%,这限制了它的治疗应用。这里,我们通过设计Un1Cas12f1,融合非特异性DNA结合蛋白Sso7d,开发了超紧凑高效的碱基编辑器,和截断单向导RNA(sgRNA),称为STUminibe。我们证明了STUminiABE的A到G转换(平均54%)或STUminiCBE的C到T转换(平均45%)。我们将STUminiCBEs包装到AAV中,并成功地在哺乳动物细胞中的PCSK9基因上引入了过早的终止密码子。总之,STUminiBE是高效的微型基础编辑器,可以很容易地包装到AAV中,用于生物研究或生物医学应用。
    Adeno-associated virus (AAV) is a relatively safe and efficient vector for gene therapy. However, due to its 4.7-kb limit of cargo, SpCas9-mediated base editors cannot be packaged into a single AAV vector, which hinders their clinical application. The development of efficient miniature base editors becomes an urgent need. Un1Cas12f1 is a class II V-F-type CRISPR-Cas protein with only 529 amino acids. Although Un1Cas12f1 has been engineered to be a base editor in mammalian cells, the base-editing efficiency is less than 10%, which limits its therapeutic applications. Here, we developed hypercompact and high-efficiency base editors by engineering Un1Cas12f1, fusing non-specific DNA binding protein Sso7d, and truncating single guide RNA (sgRNA), termed STUminiBEs. We demonstrated robust A-to-G conversion (54% on average) by STUminiABEs or C-to-T conversion (45% on average) by STUminiCBEs. We packaged STUminiCBEs into AAVs and successfully introduced a premature stop codon on the PCSK9 gene in mammalian cells. In sum, STUminiBEs are efficient miniature base editors and could readily be packaged into AAVs for biological research or biomedical applications.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    理想情况下,RNA碱基编辑器应该没有免疫原性,紧凑型,高效,具体,这在C>U编辑中还没有实现。在这里,我们首先描述一个完全来自人类的紧凑型C>U编辑器,通过将人类C>U编辑酶RESCUE-S与Cas启发的RNA靶向系统(CIRTS)融合而创建,一个微小的,人类起源的可编程RNA结合域。这个编辑,CIRTS-RESCUEv1(V1),效率低下。值得注意的是,短的富含组氨酸的结构域(HRD),它来自人类CYCT1的内部无序区(IDR),一种能够进行液-液相分离(LLPS)的蛋白质,增强了在目标和非目标的V1编辑,后一种影响很小。V1-HRD融合蛋白形成LLPS特征的斑点,和各种其他IDR(但不是LLPS受损的突变体)可以替代HRD以有效诱导puncta并增强V1,这表明不同的结构域通过一个共同的,基于LLPS的机制。重要的是,HRD融合策略适用于各种其他类型的C>URNA编辑。我们的研究扩展了RNA编辑工具箱,并展示了刺激C>URNA碱基编辑器的一般方法。
    RNA base editors should ideally be free of immunogenicity, compact, efficient, and specific, which has not been achieved for C > U editing. Here we first describe a compact C > U editor entirely of human origin, created by fusing the human C > U editing enzyme RESCUE-S to Cas inspired RNA targeting system (CIRTS), a tiny, human-originated programmable RNA-binding domain. This editor, CIRTS-RESCUEv1 (V1), was inefficient. Remarkably, a short histidine-rich domain (HRD), which is derived from the internal disordered region (IDR) in the human CYCT1, a protein capable of liquid-liquid phase separation (LLPS), enhanced V1 editing at on-targets as well as off-targets, the latter effect being minor. The V1-HRD fusion protein formed puncta characteristic of LLPS, and various other IDRs (but not an LLPS-impaired mutant) could replace HRD to effectively induce puncta and potentiate V1, suggesting that the diverse domains acted via a common, LLPS-based mechanism. Importantly, the HRD fusion strategy was applicable to various other types of C > U RNA editors. Our study expands the RNA editing toolbox and showcases a general method for stimulating C > U RNA base editors.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    杜氏肌营养不良症(DMD)是男性最常见的遗传性疾病,以肌营养不良蛋白缺乏为特征,进行性肌肉萎缩,心功能不全,过早死亡,没有有效的治疗选择。这里,我们研究了腺嘌呤碱基编辑是否可以纠正病理性无义点突变,从而导致肌营养不良蛋白基因中过早终止密码子。我们在DMD患者队列中鉴定出27个致病的无义突变。用腺嘌呤碱基编辑器(ABE)处理可以通过直接A-G编辑由DMD患者衍生的诱导多能干细胞产生的心肌细胞中的病理性无义突变来恢复肌养蛋白表达。我们还产生了两种表达人肌营养不良蛋白基因的带有突变的外显子23或30的DMD的人源化小鼠模型。肌内给药ABE,由普遍存在或肌肉特异性启动子驱动,可以在体内纠正这些无义突变,尽管在外显子30中具有更高的效率,但可以恢复人源化DMD小鼠骨骼肌纤维中的肌营养不良蛋白表达。此外,在人源化DMD小鼠的旋转杆试验中,ABE与人单指导RNA(sgRNA)的单次全身递送可诱导全身肌养蛋白表达并改善肌肉功能.这些发现表明,ABE与人类sgRNA可以在小鼠中提供DMD的治疗性缓解,为单基因疾病腺嘌呤碱基编辑疗法的开发提供依据。
    Duchenne muscular dystrophy (DMD) is the most prevalent herediatry disease in men, characterized by dystrophin deficiency, progressive muscle wasting, cardiac insufficiency, and premature mortality, with no effective therapeutic options. Here, we investigated whether adenine base editing can correct pathological nonsense point mutations leading to premature stop codons in the dystrophin gene. We identified 27 causative nonsense mutations in our DMD patient cohort. Treatment with adenine base editor (ABE) could restore dystrophin expression by direct A-to-G editing of pathological nonsense mutations in cardiomyocytes generated from DMD patient-derived induced pluripotent stem cells. We also generated two humanized mouse models of DMD expressing mutation-bearing exons 23 or 30 of human dystrophin gene. Intramuscular administration of ABE, driven by ubiquitous or muscle-specific promoters could correct these nonsense mutations in vivo, albeit with higher efficiency in exon 30, restoring dystrophin expression in skeletal fibers of humanized DMD mice. Moreover, a single systemic delivery of ABE with human single guide RNA (sgRNA) could induce body-wide dystrophin expression and improve muscle function in rotarod tests of humanized DMD mice. These findings demonstrate that ABE with human sgRNAs can confer therapeutic alleviation of DMD in mice, providing a basis for development of adenine base editing therapies in monogenic diseases.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    构建疾病相关动物模型和未来的基因治疗需要有效的种系mtDNA编辑。最近,DddA衍生的胞嘧啶碱基编辑器(DdCBE)使线粒体基因组(mtDNA)精确编辑成为可能。然而,通过受精卵注射编辑种系中的一些mtDNA位点仍然存在挑战,可能是由于植入前发育过程中mtDNA复制暂停。这里,我们引入了种系mtDNA碱基编辑策略:将DdCBEs注射到次级卵泡的卵母细胞中,在哪个阶段mtDNA活跃复制。使用这种方法,我们成功地在难以编辑的部位观察到了有效的G-A转换,并获得了活体动物模型.此外,对于那些可编辑的网站,这种策略可以大大提高基地编辑效率高达3倍,这比受精卵中的还要多。更重要的是,与受精卵相比,次级卵泡中的编辑并未增加脱靶效应的风险.这种策略提供了一种有效操纵种系mtDNA位点的选择,特别是对于难以编辑的网站。
    Efficient germline mtDNA editing is required to construct disease-related animal models and future gene therapy. Recently, the DddA-derived cytosine base editors (DdCBEs) have made mitochondrial genome (mtDNA) precise editing possible. However, there still exist challenges for editing some mtDNA sites in germline via zygote injection, probably due to the suspended mtDNA replication during preimplantation development. Here, we introduce a germline mtDNA base editing strategy: injecting DdCBEs into oocytes of secondary follicles, at which stage mtDNA replicates actively. With this method, we successfully observed efficient G-to-A conversion at a hard-to-edit site and also obtained live animal models. In addition, for those editable sites, this strategy can greatly improve the base editing efficiency up to 3-fold, which is more than that in zygotes. More important, editing in secondary follicles did not increase more the risk of off-target effects than that in zygotes. This strategy provides an option to efficiently manipulate mtDNA sites in germline, especially for hard-to-edit sites.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    可编程基因组插入(或敲入)对于基础和翻译研究都至关重要。基于CRISPR的基因组插入策略的数量不断增加,证明了该领域的持续发展。位点特异性基因组插入的常见方法依赖于细胞双链断裂修复途径,如同源定向修复,非同源末端连接,和微同源介导的末端连接。最近的进步进一步扩大了可编程基因组插入技术的工具箱,包括主要编辑,整合酶与可编程核酸酶偶联,和CRISPR相关转座子。这些工具拥有自己的能力和局限性,大力提高编辑效率,拓宽靶向范围,提高编辑特异性。在这次审查中,我们首先总结了可编程基因组插入技术的最新进展。然后,我们详细说明每种技术的利弊,以帮助研究人员在使用这些工具时做出明智的选择。最后,我们确定了未来在基础研究和治疗方面的改进和应用的机会。
    Programmable genome insertion (or knock-in) is vital for both fundamental and translational research. The continuously expanding number of CRISPR-based genome insertion strategies demonstrates the ongoing development in this field. Common methods for site-specific genome insertion rely on cellular double-strand breaks repair pathways, such as homology-directed repair, non-homologous end-joining, and microhomology-mediated end joining. Recent advancements have further expanded the toolbox of programmable genome insertion techniques, including prime editing, integrase coupled with programmable nuclease, and CRISPR-associated transposon. These tools possess their own capabilities and limitations, promoting tremendous efforts to enhance editing efficiency, broaden targeting scope and improve editing specificity. In this review, we first summarize recent advances in programmable genome insertion techniques. We then elaborate on the cons and pros of each technique to assist researchers in making informed choices when using these tools. Finally, we identify opportunities for future improvements and applications in basic research and therapeutics.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    配对SpCas9切口酶(SpCas9n)是减少基因组编辑中脱靶效应的有效策略。然而,这种方法在3'-悬垂末端时效率不高,限制其应用。为了扩大配对SpCas9n在基因组编辑中的实用性,我们测试了TREX23'-5'核酸外切酶对3'-悬垂末端修复的影响。我们发现Trex2的异位过表达刺激了配对的SpCas9n在基因组破坏中的效率,其中3'-悬垂的结果高达400倍,几乎没有刺激脱靶编辑。TREX2过表达优先删除整个3'悬垂,但对5'悬垂没有显着影响。Trex2过表达还通过配对的SpCas9n刺激基因组破坏,可能在重叠的SpCas9n靶位点产生短的3'-突出末端,提示SpCas9n对重叠目标位点的顺序切口。通过将TREX2和特别是其DNA结合缺陷型突变体与SpCas9n融合,进一步简化了该方法,提高了效率和安全性。重叠靶标处的连接分析显示,通过与SpCas9n融合的游离TREX2和TREX2,3'单链DNA(ssDNA)的末端切除程度不同。SpCas9n-TREX2融合比游离TREX2的过表达更方便,更安全,可以通过配对的SpCas9n处理3'-悬垂末端,以实现有效的基因组破坏,允许在基因组编辑中实际使用这种基于TREX2的策略。
    Paired SpCas9 nickases (SpCas9n) are an effective strategy to reduce off-target effect in genome editing. However, this approach is not efficient with 3\'-overhanging ends, limiting its applications. In order to expand the utility of paired SpCas9n in genome editing, we tested the effect of the TREX2 3\'-5\' exonuclease on repair of 3\'-overhanging ends. We found ectopic overexpression of Trex2 stimulates the efficiency of paired SpCas9n in genome disruption with 3\'-overhanging ends up to 400-fold with little stimulation of off-target editing. TREX2 overexpressed preferentially deletes entire 3\' overhangs but has no significant effect on 5\' overhangs. Trex2 overexpression also stimulates genome disruption by paired SpCas9n that potentially generate short 3\'-overhanging ends at overlapping SpCas9n target sites, suggesting sequential nicking of overlapping target sites by SpCas9n. This approach is further simplified with improved efficiency and safety by fusion of TREX2 and particularly its DNA-binding-deficient mutant to SpCas9n. Junction analysis at overlapping targets revealed the different extent of end resection of 3\' single-stranded DNA (ssDNA) by free TREX2 and TREX2 fused to SpCas9n. SpCas9n-TREX2 fusion is more convenient and safer than overexpression of free TREX2 to process 3\'-overhanging ends for efficient genome disruption by paired SpCas9n, allowing practical use of this TREX2-based strategy in genome editing.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    没有sgRNA的Cas9蛋白可以在体外诱导细胞水平的基因组损伤。然而,Cas9治疗后是否在胚胎中产生有害影响尚不清楚.这里,以猪胚胎为研究对象,我们观察到从注射的Cas9mRNA转录的Cas9蛋白可以持续到至少胚泡期。Cas9蛋白单独可诱导植入前胚胎的基因组损伤,以染色质纤维上磷酸化组蛋白H2AX灶的数量增加为代表,导致细胞凋亡和囊胚细胞数量减少。此外,单囊胚RNA测序证实,没有sgRNA的Cas9蛋白可以引起囊胚转录组的变化,抑制胚胎发育信号通路,如细胞周期,新陈代谢,和细胞通讯相关的信号通路,同时激活细胞凋亡和坏死信号通路,它们共同导致植入前胚胎发育受损。这些结果表明,当使用CRISPR-Cas9进行种系基因组编辑时,应该注意Cas9蛋白引起的有害影响。特别是使用种系基因治疗对人类病理突变进行靶向校正。
    Cas9 protein without sgRNAs can induce genomic damage at the cellular level in vitro. However, whether the detrimental effects occur in embryos after Cas9 treatment remains unknown. Here, using pig embryos as subjects, we observed that Cas9 protein transcribed from injected Cas9 mRNA can persist until at least the blastocyst stage. Cas9 protein alone can induce genome damage in preimplantation embryos, represented by the increased number of phosphorylated histone H2AX foci on the chromatin fiber, which led to apoptosis and decreased cell number of blastocysts. In addition, single-blastocyst RNA sequencing confirmed that Cas9 protein without sgRNAs can cause changes in the blastocyst transcriptome, depressing embryo development signal pathways, such as cell cycle, metabolism, and cellular communication-related signal pathways, while activating apoptosis and necroptosis signal pathways, which together resulted in impaired preimplantation embryonic development. These results indicated that attention should be given to the detrimental effects caused by the Cas9 protein when using CRISPR-Cas9 for germline genome editing, especially for the targeted correction of human pathological mutations using germline gene therapy.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    蛋白质是所有生物体的重要组成部分,主要负责生命活动;此外,它的综合依赖于一个高度复杂和准确的翻译系统。对于蛋白质,翻译水平的调节超过了转录过程中的总和,mRNA降解,和蛋白质降解。因此,有必要研究翻译层面的调控。翻译过程中的失衡可能会改变细胞格局,这不仅导致了这种情况的发生,维护,programming,入侵,影响免疫细胞的功能,改变肿瘤微环境。需要对转录和蛋白质图谱进行详细分析,以更好地理解基因翻译是如何发生的。然而,mRNA和蛋白质水平之间需要更严格的直接相关性,这在一定程度上限制了进一步的研究。翻译组学是一种捕获和测序核糖体相关mRNA的技术,可以有效地识别癌症发生过程中核糖体停滞和局部翻译异常引起的翻译变化,以进一步了解肿瘤微环境中癌细胞本身和免疫细胞的翻译景观的变化,为肿瘤治疗提供新的策略和方向。
    Protein is an essential component of all living organisms and is primarily responsible for life activities; furthermore, its synthesis depends on a highly complex and accurate translation system. For proteins, the regulation at the translation level exceeds the sum of that during transcription, mRNA degradation, and protein degradation. Therefore, it is necessary to study regulation at the translation level. Imbalance in the translation process may change the cellular landscape, which not only leads to the occurrence, maintenance, progression, invasion, and metastasis of cancer but also affects the function of immune cells and changes the tumor microenvironment. Detailed analysis of transcriptional and protein atlases is needed to better understand how gene translation occurs. However, a more rigorous direct correlation between mRNA and protein levels is needed, which somewhat limits further studies. Translatomics is a technique for capturing and sequencing ribosome-related mRNAs that can effectively identify translation changes caused by ribosome stagnation and local translation abnormalities during cancer occurrence to further understand the changes in the translation landscape of cancer cells themselves and immune cells in the tumor microenvironment, which can provide new strategies and directions for tumor treatment.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    双链DNA特异性胞苷脱氨酶(DddA)碱基编辑器在生物医学研究中具有广阔的应用前景。医学,和生物技术。对间隔区域的严格序列偏好对DddA编辑人员发挥其全部潜力提出了挑战。为了克服这种序列上下文约束,我们分析了一个蛋白质数据集,并从Ruminococcussp中鉴定了一个新的DddAtox同源物。AF17-6(RsDddA)。我们设计了RsDddA用于哺乳动物细胞系中的线粒体碱基编辑,并证明了RsDddA衍生的胞嘧啶碱基编辑器(RsDdCBE)提供了扩大的NC序列兼容性,并表现出强大的编辑效率。此外,我们的结果表明,由RsDdCBE引起的线粒体全基因组脱靶编辑的平均频率与经典DdCBE及其变体相当.
    Double-stranded DNA-specific cytidine deaminase (DddA) base editors hold great promise for applications in bio-medical research, medicine, and biotechnology. Strict sequence preference on spacing region presents a challenge for DddA editors to reach their full potential. To overcome this sequence-context constraint, we analyzed a protein dataset and identified a novel DddAtox homolog from Ruminococcus sp. AF17-6 (RsDddA). We engineered RsDddA for mitochondrial base editing in a mammalian cell line and demonstrated RsDddA-derived cytosine base editors (RsDdCBE) offered a broadened NC sequence compatibility and exhibited robust editing efficiency. Moreover, our results suggest the average frequencies of mitochondrial genome-wide off-target editing arising from RsDdCBE are comparable to canonical DdCBE and its variants.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    Primeeditor(PE)是一种多功能的基因组编辑工具,不需要额外的DNA供体或诱导双链断裂。然而,PE的体内实施仍然是一个挑战,因为它的过大的组成。在这项研究中,我们筛选出具有F155Y突变的最小截短Moloney鼠白血病病毒(MMLV)逆转录酶(RT)以保持基因编辑效率。我们发现了MMLVRT的最有效的基因编辑变体,尺寸最小。在优化pegRNA和掺入nicksgRNA后,mini-PE在人和小鼠细胞的目标部位提供高达10%的精确编辑。它还在腺相关病毒(AAV)递送后精确地编辑了小鼠视网膜中的小鼠Hsf1基因,虽然编辑效率低于1%。我们将专注于提高mini-PE的编辑效率,并利用其对人类遗传疾病的治疗潜力。
    Prime editor (PE) is a versatile genome editing tool that does not need extra DNA donors or inducing double-strand breaks. However, in vivo implementation of PE remains a challenge because of its oversized composition. In this study, we screened out the smallest truncated Moloney murine leukemia virus (MMLV) reverse transcriptase (RT) with the F155Y mutation to keep gene editing efficiency. We discovered the most efficient gene editing variants of MMLV RT with the smallest size. After optimization of the pegRNAs and incorporation with nick sgRNAs, the mini-PE delivered up to 10% precise editing at target sites in human and mouse cells. It also edited the mouse Hsf1 gene in the mouse retina precisely after delivery with adeno-associated viruses (AAVs), although the editing efficiency was lower than 1%. We will focus on improving the editing efficiency of mini-PE and exploiting its therapeutic potential against human genetic diseases.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

公众号