Cohesin

  • 文章类型: Journal Article
    The localization of the meiotic specific regulatory molecule Moa1 to the centromere is regulated by the kinetochore protein CENP-C, and participates in the cohesion of sister chromatids in the centromere region mediated by the cohesin Rec8. To examine the interaction of these proteins, we analyzed the interactions between Moa1 and Rec8, CENP-C by yeast two-hybrid assays and identified several amino acid residues in Moa1 required for the interaction with CENP-C and Rec8. The results revealed that the interaction between Moa1 and CENP-C is crucial for the Moa1 to participate in the regulation of monopolar attachment of sister kinetochores. However, mutation at S143 and T150 of Moa1, which are required for interaction with Rec8 in the two-hybrid assay, did not show significant defects. Mutations in amino acid residues may not be sufficient to interfere with the interaction between Moa1 and Rec8 in vivo. Further research is needed to determine the interaction domain between Moa1 and Rec8. This study revealed specific amino acid sites at which Moa1 affects the meiotic homologous chromosome segregation, providing a deeper understanding of the mechanism of meiotic chromosome segregation.
    减数分裂特异性调控分子Moa1定位到着丝粒受到动粒蛋白CENP-C的调控,同时Moa1参与黏连蛋白Rec8介导的着丝粒区域姐妹染色单体的黏连。为了研究这些蛋白质之间的相互作用,本研究利用酵母双杂交实验(yeast two-hybrid assay)测定分析了Moa1和CENP-C、Rec8之间的相互作用,并通过在Moa1中定点突变鉴定了与CENP-C和Rec8相互作用所需的一些氨基酸残基。实验结果表明,Moa1和CENP-C的相互作用对于Moa1参与调节姐妹动粒的单极附着很重要。然而,双杂交实验中与Rec8相互作用所需的Moa1的S143和T150突变没有显示出Moa1或Rec8功能的显著缺陷。这表明氨基酸残基的突变可能不足以干扰体内Moa1和Rec8之间的相互作用,需要进一步的研究来确定Moa1和Rec8的相互作用域。本研究揭示了影响减数分裂同源染色体分离的Moa1氨基酸位点,为减数分裂的染色体分离机制提供更深入的理解。.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    环状的Cohesin复合体,由核心亚基Smc1,Smc3,Scc1和SA2(或其模拟SA1)组成,拓扑地捕获两个重复的姐妹DNA分子,以在S期建立姐妹染色单体内聚力。Cohesin释放因子Wapl如何结合Cohesin复合物仍然很难理解,从而诱导Cohesin从有丝分裂染色体上解离,以允许姐妹染色单体的适当解析和分离。这里,我们证明Wapl使用两个包含FGF基序和YNARHWN基序的结构模块,分别,在Scc1和SA2之间的广泛复合界面中同时结合不同的口袋。引人注目的是,只有当两个对接模块都变异时,Wapl完全失去了绑定Scc1-SA2接口和释放Cohesin的能力,导致有丝分裂中错误的染色体分离。令人惊讶的是,索罗林,它包含一个保守的FGF基序,在S期和G2期作为Wapl的主要拮抗剂,不绑定Scc1-SA2接口。此外,SGo1,在有丝分裂着丝粒上的主要保护者,只能与FGF基序竞争,而不能与Wapl的YNARHWN基序竞争结合Scc1-SA2接口。我们的数据揭示了Wapl结合Cohesin以确保精确染色体分离的分子机制。
    The ring-shaped Cohesin complex, consisting of core subunits Smc1, Smc3, Scc1, and SA2 (or its paralog SA1), topologically entraps two duplicated sister DNA molecules to establish sister chromatid cohesion in S-phase. It remains largely elusive how the Cohesin release factor Wapl binds the Cohesin complex, thereby inducing Cohesin disassociation from mitotic chromosomes to allow proper resolution and separation of sister chromatids. Here, we show that Wapl uses two structural modules containing the FGF motif and the YNARHWN motif, respectively, to simultaneously bind distinct pockets in the extensive composite interface between Scc1 and SA2. Strikingly, only when both docking modules are mutated, Wapl completely loses the ability to bind the Scc1-SA2 interface and release Cohesin, leading to erroneous chromosome segregation in mitosis. Surprisingly, Sororin, which contains a conserved FGF motif and functions as a master antagonist of Wapl in S-phase and G2-phase, does not bind the Scc1-SA2 interface. Moreover, Sgo1, the major protector of Cohesin at mitotic centromeres, can only compete with the FGF motif but not the YNARHWN motif of Wapl for binding Scc1-SA2 interface. Our data uncover the molecular mechanism by which Wapl binds Cohesin to ensure precise chromosome segregation.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    TAD边界是通过阻断通过Cohesin介导的环挤压形成的DNA环来分离相邻结构域中的生物过程的基因组元件。大多数TAD边界由CTCF蛋白的结合位点阵列组成,其与Cohesin复杂块的相互作用循环挤出。但是TAD边界不是完全不可渗透的,并且允许有限量的TAD间环形成。基于对Nano-C数据的再分析,多接触染色体构象捕获试验,我们提出了一个模型,其中成簇的CTCF结合位点促进了Cohesin的连续停滞以及随后与染色质的解离。尽管如此,一小部分Cohesin实现了边界通读。由于基因组中其他地方的Cohesin解离速率恒定,但是,TAD间循环的最大长度受到限制。我们推测,停滞位点的DNA编码组织调节TAD边界通透性,并讨论了增强子-启动子环形成和其他基因组过程的含义。
    TAD boundaries are genomic elements that separate biological processes in neighboring domains by blocking DNA loops that are formed through Cohesin-mediated loop extrusion. Most TAD boundaries consist of arrays of binding sites for the CTCF protein, whose interaction with the Cohesin complex blocks loop extrusion. TAD boundaries are not fully impermeable though and allow a limited amount of inter-TAD loop formation. Based on the reanalysis of Nano-C data, a multicontact Chromosome Conformation Capture assay, we propose a model whereby clustered CTCF binding sites promote the successive stalling of Cohesin and subsequent dissociation from the chromatin. A fraction of Cohesin nonetheless achieves boundary read-through. Due to a constant rate of Cohesin dissociation elsewhere in the genome, the maximum length of inter-TAD loops is restricted though. We speculate that the DNA-encoded organization of stalling sites regulates TAD boundary permeability and discuss implications for enhancer-promoter loop formation and other genomic processes.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    During meiosis, defects in cohesin localization within the centromere region can result in various diseases. Accurate cohesin localization depends on the Mis4-Ssl3 loading complex. Although it is known that cohesin completes the loading process with the help of the loading complex, the mechanisms underlying its localization in the centromere region remain unclear. Previous studies suggest cohesin localization in the centromere is mediated by phosphorylation of centromeric proteins. In this study, we focused on the Fta2 protein, a component of the Sim4 centromere protein complex. Using bioinformatics methods, potential phosphorylation sites were identified, and fta2-9A and fta2-9D mutants were constructed in Schizosaccharomyces pombe. The phenotypes of these mutants were characterized through testing thiabendazole (TBZ) sensitivity and fluorescent microscopy localization. Results indicated that Fta2 phosphorylation did not impact mitosis but affected chromosome segregation during meiosis. This study suggests that Fta2 phosphorylation is vital for meiosis and may be related to the specific localization of cohesin during this process.
    在减数分裂过程中,黏连蛋白(cohesin)在着丝粒区域定位出现缺陷时会导致一系列疾病的产生。黏连蛋白的正确定位离不开装载复合体Mis4-Ssl3的参与,现已知黏连蛋白在装载复合体的帮助下完成装载过程,但是其如何在着丝粒区域定位仍不清楚。基于已有研究报道黏连蛋白在着丝粒的定位由着丝粒蛋白的磷酸化介导,本研究从Sim4着丝粒蛋白复合体组分Fta2蛋白着手,通过生物信息学手段寻找潜在的磷酸化位点,在裂殖酵母(Schizosaccharomyces pombe)中构建了fta2-9A和fta2-9D突变体,并通过噻苯咪唑(thiabendazole,TBZ)敏感度测试和荧光显微定位对其表型进行检测。结果显示,Fta2蛋白的磷酸化对有丝分裂没有影响,但对减数分裂染色体分离存在影响。本研究表明Fta2的磷酸化对减数分裂非常重要,很可能与减数分裂特有的黏连蛋白定位有关。.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    Cohesin,具有四个核心亚基的染色质相关蛋白复合物(Smc1a,Smc3、Rad21和Stag1或2),在后生动物的细胞增殖和基因表达中起着核心作用。称为“粘附蛋白病”的人类发育障碍的特征是粘附蛋白或其调节剂的种系突变,不能完全消除粘附蛋白的功能。然而,尚不清楚单个粘附素亚基中的突变是否具有独立的发育后果。在这里,我们表明斑马鱼rad21或stag2b突变体独立影响胚胎尾芽发育。两种突变体都改变了中胚层的诱导,但只有纯合或杂合rad21突变影响细胞周期基因表达。stag2b突变体在神经中胚层祖细胞中具有较窄的脊索和减少的Wnt信号,如单细胞RNA测序所揭示的。Wnt信号的刺激挽救stag2b的转录和形态,但不是rad21突变体.我们的结果表明,改变粘附分子数量与组成的突变具有独立的发育后果,对该病的理解和管理具有重要意义。
    Cohesin, a chromatin-associated protein complex with four core subunits (Smc1a, Smc3, Rad21 and either Stag1 or 2), has a central role in cell proliferation and gene expression in metazoans. Human developmental disorders termed \'cohesinopathies\' are characterized by germline variants of cohesin or its regulators that do not entirely eliminate cohesin function. However, it is not clear whether mutations in individual cohesin subunits have independent developmental consequences. Here, we show that zebrafish rad21 or stag2b mutants independently influence embryonic tailbud development. Both mutants have altered mesoderm induction, but only homozygous or heterozygous rad21 mutation affects cell cycle gene expression. stag2b mutants have narrower notochords and reduced Wnt signaling in neuromesodermal progenitors as revealed by single-cell RNA sequencing. Stimulation of Wnt signaling rescues transcription and morphology in stag2b, but not rad21, mutants. Our results suggest that mutations altering the quantity versus composition of cohesin have independent developmental consequences, with implications for the understanding and management of cohesinopathies.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    表观遗传学是研究基因组和基因表达模式的可遗传变化,这些变化不是由DNA序列的直接变化引起的。这些变化的例子包括对DNA结合的组蛋白的翻译后修饰,DNA甲基化,和重建核架构。总的来说,表观遗传变化提供了一层调控,影响基因的转录活性,同时保持DNA序列不变。已经在先天性心脏病(CHD)患者中发现了影响负责修饰或感知表观遗传标记的酶的序列变异或突变。和表观遗传复合物的小分子抑制剂已显示出有望作为成人心脏病的疗法。此外,具有编码表观遗传酶的基因突变或缺失的转基因小鼠概括了人类心脏病的各个方面。一起来看,这些研究结果表明,表观遗传学领域的发展将为我们理解先天性和成人心脏病提供新的治疗机会.
    Epigenetics is the study of heritable changes to the genome and gene expression patterns that are not caused by direct changes to the DNA sequence. Examples of these changes include posttranslational modifications to DNA-bound histone proteins, DNA methylation, and remodeling of nuclear architecture. Collectively, epigenetic changes provide a layer of regulation that affects transcriptional activity of genes while leaving DNA sequences unaltered. Sequence variants or mutations affecting enzymes responsible for modifying or sensing epigenetic marks have been identified in patients with congenital heart disease (CHD), and small-molecule inhibitors of epigenetic complexes have shown promise as therapies for adult heart diseases. Additionally, transgenic mice harboring mutations or deletions of genes encoding epigenetic enzymes recapitulate aspects of human cardiac disease. Taken together, these findings suggest that the evolving field of epigenetics will inform our understanding of congenital and adult cardiac disease and offer new therapeutic opportunities.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    在分裂的细胞中,准确的染色体分离取决于姐妹染色单体的凝聚力,在DNA复制过程中建立的蛋白质连接。卵母细胞中忠实的染色体分离需要凝聚力,首先建立在S阶段,保持完好无损几天到几十年,取决于有机体。卵母细胞中减数分裂内聚力的过早丧失导致非整倍体配子的产生,并随着女性年龄的增长(母亲年龄的影响)导致减数分裂分离错误的发生率增加。流行的模型是内聚连接不会在哺乳动物卵母细胞中翻转。然而,我们以前曾报道过,当减数分裂S期后单个粘附素亚基或粘附素调节因子被击倒时,果蝇卵母细胞会出现内聚相关缺陷.这里,我们使用两种策略仅在果蝇卵母细胞的前期中期表达标记的粘附蛋白亚基,并证明新表达的粘附蛋白可用于在减数分裂S期后形成从头连接。在前期,沿着卵母细胞染色体臂的Cohesin似乎在2天内完全翻转,而在着丝粒的置换不那么广泛。与S阶段内聚建立不同,减数分裂前期形成新的内聚键不需要Smc3头部内保守赖氨酸的乙酰化。我们的发现表明,果蝇卵母细胞中S期和染色体分离之间的内聚力的维持需要一个积极的内聚复兴计划,该计划在减数分裂前期产生新的内聚联系。
    In dividing cells, accurate chromosome segregation depends on sister chromatid cohesion, protein linkages that are established during DNA replication. Faithful chromosome segregation in oocytes requires that cohesion, first established in S phase, remain intact for days to decades, depending on the organism. Premature loss of meiotic cohesion in oocytes leads to the production of aneuploid gametes and contributes to the increased incidence of meiotic segregation errors as women age (maternal age effect). The prevailing model is that cohesive linkages do not turn over in mammalian oocytes. However, we have previously reported that cohesion-related defects arise in Drosophila oocytes when individual cohesin subunits or cohesin regulators are knocked down after meiotic S phase. Here, we use two strategies to express a tagged cohesin subunit exclusively during mid-prophase in Drosophila oocytes and demonstrate that newly expressed cohesin is used to form de novo linkages after meiotic S phase. Cohesin along the arms of oocyte chromosomes appears to completely turn over within a 2-day window during prophase, whereas replacement is less extensive at centromeres. Unlike S-phase cohesion establishment, the formation of new cohesive linkages during meiotic prophase does not require acetylation of conserved lysines within the Smc3 head. Our findings indicate that maintenance of cohesion between S phase and chromosome segregation in Drosophila oocytes requires an active cohesion rejuvenation program that generates new cohesive linkages during meiotic prophase.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    控制基因转录的细胞过程的复杂景观,染色质组织,基因组稳定性是一个令人着迷的研究领域。维持这种微妙平衡的关键角色是合众情结,具有多方面作用的分子机器。这篇综述对这些复杂的联系及其对各种人类疾病的重大影响进行了深入的探索。
    The intricate landscape of cellular processes governing gene transcription, chromatin organization, and genome stability is a fascinating field of study. A key player in maintaining this delicate equilibrium is the cohesin complex, a molecular machine with multifaceted roles. This review presents an in-depth exploration of these intricate connections and their significant impact on various human diseases.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    多亚基SMC复合物的最突出代表,凝聚素和凝集素,最著名的是有丝分裂染色体的结构成分。事实证明,这些复合物,以及它们的细菌同源物,是分子马达,这些复合物沿DNA线的ATP依赖性运动导致DNA环的形成。近年来,我们目睹了SMC依赖的DNA循环过程中雪崩般的数据积累,也称为环挤出。这篇综述简要总结了当前对粘附素依赖性挤压在细胞生理学中的位置和作用的理解,并提出了许多模型,以最引人注目的方式描述了挤压的潜在分子机制。我们以讨论粘附蛋白挤出DNA环的能力如何在机械上与其参与姐妹染色单体内聚的关系来结束评论。
    The most prominent representatives of multisubunit SMC complexes, cohesin and condensin, are best known as structural components of mitotic chromosomes. It turned out that these complexes, as well as their bacterial homologues, are molecular motors, the ATP-dependent movement of these complexes along DNA threads leads to the formation of DNA loops. In recent years, we have witnessed an avalanche-like accumulation of data on the process of SMC dependent DNA looping, also known as loop extrusion. This review briefly summarizes the current understanding of the place and role of cohesin-dependent extrusion in cell physiology and presents a number of models describing the potential molecular mechanism of extrusion in a most compelling way. We conclude the review with a discussion of how the capacity of cohesin to extrude DNA loops may be mechanistically linked to its involvement in sister chromatid cohesion.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    长线性基因组DNA分子的精确复制和分离与许多纯机械问题有关。SMC复合物是细胞机制的关键组成部分,可确保在分裂过程中姐妹染色体的缺失和基因组DNA的压缩。Cohesin,一种重要的真核SMC复合物,具有典型的环结构,具有亚基间孔,DNA分子可以穿过该孔。粘附素进行这种DNA拓扑捕获的能力对于姐妹染色单体的复制后缔合现象至关重要,这通常被称为内聚。最近,很明显,cohesin和其他SMC复合物是,事实上,具有非常特殊的运动模式的马达蛋白,导致DNA环的形成。这个特定的过程被称为环挤出。挤压是凝聚的多种功能的基础,但是这个过程的分子机制仍然是个谜。在这次审查中,我们总结了粘附蛋白的分子结构数据,ATP水解循环对这种结构的影响,和已知的粘附蛋白-DNA相互作用模式。在不远的将来,这里提出的许多看似完全不同的事实可能会被纳入一个统一的循环挤压机械模型中。
    Accurate duplication and separation of long linear genomic DNA molecules is associated with a number of purely mechanical problems. SMC complexes are key components of the cellular machinery that ensures decatenation of sister chromosomes and compaction of genomic DNA during division. Cohesin, one of the essential eukaryotic SMC complexes, has a typical ring structure with intersubunit pore through which DNA molecules can be threaded. Capacity of cohesin for such topological entrapment of DNA is crucial for the phenomenon of post-replicative association of sister chromatids better known as cohesion. Recently, it became apparent that cohesin and other SMC complexes are, in fact, motor proteins with a very peculiar movement pattern leading to formation of DNA loops. This specific process has been called loop extrusion. Extrusion underlies multiple functions of cohesin beyond cohesion, but molecular mechanism of the process remains a mystery. In this review, we summarized the data on molecular architecture of cohesin, effect of ATP hydrolysis cycle on this architecture, and known modes of cohesin-DNA interactions. Many of the seemingly disparate facts presented here will probably be incorporated in a unified mechanistic model of loop extrusion in the not-so-distant future.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

公众号