Cinnamates

肉桂酸盐
  • 文章类型: Journal Article
    日本泡杏,叫做“umeboshi”,是一种传统食品,在经验上已被用作民间药物。umeboshi的主要变体称为“shiso-zukeumeboshi”,意思是用红色紫苏叶腌制,以增加丰富多彩的外观。这项研究调查了酸洗过程和模拟消化过程中shiso-zukeumeboshi的酚类和抗氧化潜力的变化。结果表明,以μg/gDW计,红紫苏酸洗(PP;1338.12)的酚类含量是盐酸洗(SP;101.99)的13倍,迷迭香酸的形成增强。模拟消化显示从胃到小肠的抗氧化剂含量和活性逐渐增加,TPC和TFC在肠道环境中快速释放。研究得出的结论是,由于紫苏酸洗过程中产生的优异的抗氧化化合物,shiso-zukeumeboshi提供了更高的健康益处。
    Japanese pickled apricot, called \"umeboshi\", is a traditional food that has experientially been consumed as a folk medicine. The main variation of umeboshi is called \"shiso-zuke umeboshi\", meaning pickled with red perilla leaves to add a colorful appearance. This study investigated changes in phenolics and antioxidant potential of shiso-zuke umeboshi during pickling processes and simulated digestion. Results showed that the red perilla pickling (PP; 1338.12) had 13 times higher phenolics than salt pickling (SP; 101.99) in μg/g DW, and the formation of rosmarinic acid was enhanced. The simulated digestion showed a gradual increase in antioxidant content and activity from the stomach to small intestine, with TPC and TFC being rapidly released in the intestinal environment. The study concluded that shiso-zuke umeboshi provides higher health benefits due to the excellent antioxidant compounds produced through the perilla pickling process.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    夏枯草(P.)在改善睡眠方面具有很大的应用价值和发展前景。在这项研究中,我们继续从化学特征和基于睡眠改善功能成分的功能两方面评估寻常假单胞菌的睡眠改善功能和机制,迷迭香酸和丹参,在前一阶段筛选出作为指数成分。采用UPLC-MSn技术对普通青霉及其酚酸组分的化学成分进行了表征。通过指纹图谱结合迷迭香酸和丹参苷的定量分析,科学地评价了普通P的睡眠改善酚酸组分的质量。通过不同的失眠模型,包括PCPA诱导的失眠模型和表面平台睡眠剥夺模型,验证了寻常假单胞菌酚酸部分在改善睡眠中的作用。HE染色观察寻常型疟原虫对不同脑区神经细胞形态的影响。体内实验和分子对接探讨了普通P的功能成分的镇静催眠作用。这些研究结果从多个角度探讨了寻常假单胞菌改善睡眠的物质基础和作用机制,这有助于为改善睡眠的功能性食品的开发提供基础。
    Prunella vulgaris L. (P. vulgaris) has great application value and development prospects in improving sleep. In this study, we continued to evaluate the sleep-improvement function and mechanism of P. vulgaris from both chemical characterization and function based on sleep-improvement functional ingredients, rosmarinic acid and salviaflaside, screened out in the previous stage as the index components. The chemical constituents of P. vulgaris and its phenolic acid fraction were characterized by the UPLC-MSn technology. The quality of the sleep-improvement phenolic acid fraction of P. vulgaris was scientifically evaluated by fingerprints combined with quantitative analysis of rosmarinic acid and salviaflaside. The function of phenolic acid parts of P. vulgaris in improving sleep was verified by different insomnia models including the PCPA-induced insomnia model and surface platform sleep deprivation model. HE staining was used to observe the effect of P. vulgaris on the morphology of nerve cells in different brain regions. In vivo experiments and molecular docking explored the sedative-hypnotic effects of functional ingredients of P. vulgaris. All these results investigated the material basis and mechanism of P. vulgaris to improve sleep from multiple perspectives, which contribute to providing a basis for the development of functional food to improve sleep.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    4-甲氧基肉桂酸异戊酯(IMC)由于其优异的UV过滤性能而广泛用于各个领域。然而,由于其细胞毒性和抗微生物降解性,IMC的潜在生态环境毒性已成为人们关注的焦点。在这项研究中,我们提出了一种主客体超分子方法来增强IMC的功能,导致更环保和高性能的材料。使用磺丁基-β-环糊精钠盐(SBE-β-CD)作为主体分子。通过“饱和溶液法”制备IMC-SBE-β-CD超分子物质,并对其性能和生物安全性进行了评估。同时,我们进行了AOS树评估系统,该系统超越了现有的基于凋亡的评估方法,氧化应激系统,和信号通路,以研究IMC-SBE-β-CD在人肝癌SMMC-7721细胞作为模型生物的毒理学机制。AOS树评估系统旨在提供对IMC-SBE-β-CD的细胞毒性作用的综合分析。我们的发现表明IMC-SBE-β-CD具有84.45%的包封率和在30°C下的最佳稳定性。Further,IMC-SBE-β-CD促进细胞生长和繁殖,而不损害线粒体和细胞核的完整性或破坏氧化应激和凋亡相关途径。与IMC相比,IMC-SBE-β-CD是生物安全的,并且具有改善的水溶性,同时保持UV吸收性质。我们的研究为疏水封装提供了基础,使用环糊精的低毒性有机化合物,并为该领域的未来研究提供有价值的见解。
    Isoamyl 4-methoxycinnamate (IMC) is widely used in various fields because of its exceptional UV-filter properties. However, due to its cytotoxicity and anti-microbial degradability, the potential eco-environmental toxicity of IMC has become a focus of attention. In this study, we propose a host-guest supramolecule approach to enhance the functionality of IMC, resulting in a more environmentally friendly and high-performance materials. Sulfobutyl-β-cyclodextrin sodium salt (SBE-β-CD) was used as the host molecule. IMC-SBE-β-CD supramolecular substances were prepared through the \"saturated solution method\", and their properties and biosecurity were evaluated. Meanwhile, we conducted the AOS tree evaluation system that surpasses existing evaluation approaches based on apoptosis, oxidative stress system, and signaling pathways to investigate the toxicological mechanisms of IMC-SBE-β-CD within human hepatoma SMMC-7721 cells as model organisms. The AOS tree evaluation system aims to offer the comprehensive analysis of the cytotoxic effects of IMC-SBE-β-CD. Our findings showed that IMC-SBE-β-CD had an encapsulation rate of 84.45% and optimal stability at 30 °C. Further, IMC-SBE-β-CD promoted cell growth and reproduction without compromising the integrity of mitochondria and nucleus or disrupting oxidative stress and apoptosis-related pathways. Compared to IMC, IMC-SBE-β-CD is biologically safe and has improved water solubility with the UV absorption property maintained. Our study provides the foundation for the encapsulation of hydrophobic, low-toxicity organic compounds using cyclodextrins and offers valuable insights for future research in this field.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    使用纳米颗粒的磁性药物递送系统为临床治疗提供了有希望的机会。本研究探索了RosA-CrFe2O4纳米颗粒的潜在抗炎特性。这些纳米颗粒是通过光介导提取技术通过迷迭香酸(RosA)共沉淀而开发的。XRD,FTIR,和TEM技术被用来表征纳米粒子,结果表明,它们具有立方尖晶石铁氧体(FCC)结构,平均粒径为25nm。RosA-CrFe2O4纳米颗粒的抗炎和抗氧化特性通过使用LPS诱导的原始264.7巨噬细胞和过氧化氢清除试验进行评估,分别。结果表明,RosA-CrFe2O4纳米颗粒具有中等程度的DPPH清除作用,IC50值为59.61±4.52μg/ml。值得注意的是,这些纳米颗粒有效地抑制了促炎基因的表达(IL-1β,TNF-α,IL-6和iNOS)在LPS刺激的细胞中。此外,RosA-CrFe2O4纳米颗粒的抗炎活性通过减少LPS刺激的巨噬细胞中分泌性促炎细胞因子(IL-6和TNF-α)的释放得到证实。这项研究强调了植物介导的CrFe2O4-RosA在生物医学应用中作为抗炎和抗氧化剂的潜力。
    Magnetic drug delivery systems using nanoparticles present a promising opportunity for clinical treatment. This study explored the potential anti-inflammatory properties of RosA- CrFe2O4 nanoparticles. These nanoparticles were developed through rosmarinic acid (RosA) co-precipitation via a photo-mediated extraction technique. XRD, FTIR, and TEM techniques were employed to characterize the nanoparticles, and the results indicated that they had a cubic spinel ferrite (FCC) structure with an average particle size of 25nm. The anti-inflammatory and antioxidant properties of RosA- CrFe2O4 nanoparticles were evaluated by using LPS-induced raw 264.7 macrophages and a hydrogen peroxide scavenging assay, respectively. The results showed that RosA- CrFe2O4 nanoparticles had moderate DPPH scavenging effects with an IC50 value of 59.61±4.52μg/ml. Notably, these nanoparticles effectively suppressed the expression of pro-inflammatory genes (IL-1β, TNF-α, IL-6, and iNOS) in LPS-stimulated cells. Additionally, the anti-inflammatory activity of RosA- CrFe2O4 nanoparticles was confirmed by reducing the release of secretory pro-inflammatory cytokines (IL-6 and TNF-α) in LPS-stimulated macrophages. This investigation highlights the promising potential of Phyto-mediated CrFe2O4-RosA as an anti-inflammatory and antioxidant agent in biomedical applications.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    这项研究介绍了一种新颖的化学信息学阅读方法,旨在识别潜在的环境肥胖,能够通过主要影响核激素受体(NRs)来破坏代谢和诱导肥胖的物质。利用从8435种Tox21化合物的化学指纹中得出的实值二维特征,聚类分析和随后的统计检验显示385个簇富含与特定NR目标相关的化合物。值得注意的是,一个簇显示过氧化物酶体增殖物激活受体γ(PPARγ)激动剂活性的选择性富集,突出特征为甲氧基肉桂酸酯紫外线(UV)过滤剂和与obesogen相关的化合物。实验验证证实,4-甲氧基肉桂酸2-乙氧基乙酯,有机紫外线过滤剂cinoxate,可以选择性地结合PPARγ(Ki=18.0μM),在成脂分化过程中在人骨髓来源的间充质干细胞中引发致肥表型。分子对接和进一步的实验确定cinoxate是一种有效的PPARγ完全激动剂,证明了对辅激活者SRC3招募的偏好。此外,cinoxate上调了在临床使用过程中暴露的正常人表皮角质形成细胞中编码脂质代谢酶的基因的转录水平。这项研究为化学信息学阅读分析在优先考虑潜在的致癌物方面的功效提供了令人信服的证据。展示其在揭示cinoxate作为一种生性PPARγ激动剂方面的效用。
    This study introduces a novel cheminformatic read-across approach designed to identify potential environmental obesogens, substances capable of disrupting metabolism and inducing obesity by mainly influencing nuclear hormone receptors (NRs). Leveraging real-valued two-dimensional features derived from chemical fingerprints of 8435 Tox21 compounds, cluster analysis and subsequent statistical testing revealed 385 clusters enriched with compounds associated with specific NR targets. Notably, one cluster exhibited selective enrichment in peroxisome proliferator-activated receptor γ (PPARγ) agonist activity, prominently featuring methoxy cinnamate ultraviolet (UV) filters and obesogen-related compounds. Experimental validation confirmed that 2-ethoxyethyl 4-methoxycinnamate, an organic UV filter cinoxate, could selectively bind to PPARγ (Ki = 18.0 μM), eliciting an obesogenic phenotype in human bone marrow-derived mesenchymal stem cells during adipogenic differentiation. Molecular docking and further experiments identified cinoxate as a potent PPARγ full agonist, demonstrating a preference for coactivator SRC3 recruitment. Moreover, cinoxate upregulated transcription levels of genes encoding lipid metabolic enzymes in normal human epidermal keratinocytes as primary cells exposed during clinical usage. This study provides compelling evidence for the efficacy of cheminformatic read-across analysis in prioritizing potential obesogens, showcasing its utility in unveiling cinoxate as an obesogenic PPARγ agonist.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    尽管用于体外培养以促进次级代谢产物的产生,如果剂量不当,UV-B辐射会严重影响植物生长。迷迭香愈伤组织可作为食品和医药工业中有效成分的重要来源。为了平衡UV-B对rosmary愈伤组织的正负效应,本研究研究了褪黑素在UV-B辐射下对迷迭香愈伤组织的影响。结果表明,褪黑素能促进迷迭香愈伤组织的生长,鲜重和干重分别增加了15.81%和8.30%,分别。添加100μM褪黑素可提高迷迭香愈伤组织中的抗氧化酶活性和NO含量。同时,褪黑素还能显著降低UV-B胁迫下迷迭香愈伤组织的膜脂损伤和H2O2积累,丙二醛(MDA)和H2O2含量分别降低13.03%和14.55%,分别。此外,褪黑素使迷迭香愈伤组织中的总酚和迷迭香酸含量分别增加了19%和54%,分别。褪黑素显著进步了迷迭香愈伤组织提取物的抗氧化活性。这些结果表明,外源褪黑素可以通过促进NO的积累,进一步增强酚类物质的积累和生物活性,从而减轻UV-B胁迫对迷迭香愈伤组织的不利影响。
    Although used in in vitro culture to boost secondary metabolite production, UV-B radiation can seriously affect plant growth if not properly dosed. Rosemary callus can be used as an important source of effective ingredients in the food and medicine industry. To balance the positive and negative effects of UV-B on rosmary callus, this study investigated the effects of melatonin on rosemary callus under UV-B radiation. The results showed that melatonin improved rosemary callus growth, with fresh weight and dry weight increased by 15.81% and 8.30%, respectively. The addition of 100 μM melatonin increased antioxidant enzyme activity and NO content in rosemary callus. At the same time, melatonin also significantly reduced membrane lipid damage and H2O2 accumulation in rosemary callus under UV-B stress, with malondialdehyde (MDA) and H2O2 contents reduced by 13.03% and 14.55%, respectively. In addition, melatonin increased the total phenol and rosmarinic acid contents in rosemary callus by 19% and 54%, respectively. Melatonin significantly improved the antioxidant activity of the extracts from rosemary callus. These results suggest that exogenous melatonin can alleviate the adverse effects of UV-B stress on rosemary callus by promoting NO accumulation while further enhancing phenolic accumulation and biological activity.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    化疗药物和放射治疗是对抗癌症的基本治疗方法,但是,经常,这些治疗的剂量受到其非选择性毒性的限制,影响肿瘤周围的健康组织。另一方面,耐药是公认的化疗失败的主要原因。迷迭香酸(RA)是一种广泛分布于植物和蔬菜中的苯丙素类多酚,包括药用芳香草药,食用已证明有益的活性作为抗氧化剂和抗炎药,并降低癌症的风险。最近,一些研究表明,RA能够逆转一线化疗药物对癌症的耐药性,以及对化疗和放疗引起的毒性起保护作用,主要是由于其清除剂的能力。这篇评论汇编了来自GoogleScholar的56篇文章的信息,PubMed,和ClinicalTrials.gov旨在解决RA作为癌症治疗补充疗法的作用。
    Chemotherapeutic drugs and radiotherapy are fundamental treatments to combat cancer, but, often, the doses in these treatments are restricted by their non-selective toxicities, which affect healthy tissues surrounding tumors. On the other hand, drug resistance is recognized as the main cause of chemotherapeutic treatment failure. Rosmarinic acid (RA) is a polyphenol of the phenylpropanoid family that is widely distributed in plants and vegetables, including medicinal aromatic herbs, consumption of which has demonstrated beneficial activities as antioxidants and anti-inflammatories and reduced the risks of cancers. Recently, several studies have shown that RA is able to reverse cancer resistance to first-line chemotherapeutics, as well as play a protective role against toxicity induced by chemotherapy and radiotherapy, mainly due to its scavenger capacity. This review compiles information from 56 articles from Google Scholar, PubMed, and ClinicalTrials.gov aimed at addressing the role of RA as a complementary therapy in cancer treatment.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    这篇综述强调了营养成分,植物化学化合物,以及在亚马逊地区消费的三种非常规食用植物的生物学特性:ora-pro-nóbis(PereskiaaculeataMill。),Taioba(矢状叶黄),和vitoria-régia(维多利亚亚马逊)。这些植物显示出丰富的营养,功能,和经济潜力,可以增加日常营养素的摄入量,能源,和生物活性化合物。Ora-pro-nóbis是咖啡酸的丰富来源,槲皮素,和异鼠李素;Taioba含有丁香酸,咖啡酸,和槲皮素;和vitoria-régia显示肉桂酸,咖啡酸,和芥子酸的成分。这些化合物赋予抗氧化剂,抗癌,抗菌,抗炎,镇痛药,和这些植物的抗增殖特性。这些非常规植物可以被食品工业用作食品和补充剂和治疗植物,以开发有价值的食品产品,化妆品,Pharmaceutical,和医疗应用。
    This review highlights the nutritional content, phytochemical compounds, and biological properties of three unconventional food plants consumed in the Amazon: ora-pro-nóbis (Pereskia aculeata Mill.), taioba (Xanthosoma sagittifolium), and vitória-régia (Victoria amazonica). These plants show significant nutritional, functional, and economic potential, which can enhance the intake of daily nutrients, energy, and bioactive compounds. Ora-pro-nóbis is a rich source of caftaric acid, quercetin, and isorhamnetin; taioba contains syringic acid, caffeic acid, and quercetin; and vitória-régia shows cinnamic acid, caffeic acid, and sinapic acid in its composition. These compounds confer antioxidant, anticancer, antimicrobial, anti-inflammatory, analgesic, and antiproliferative properties on these plants. These unconventional plants can be exploited by the food industry as food and supplements and therapeutic plants to develop valuable products for food, cosmetics, pharmaceutical, and medical applications.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    肝纤维化的特征在于慢性炎症反应和进行性纤维瘢痕形成。巨噬细胞通过重建免疫微环境在肝纤维化的发病机制中起着核心作用。黄连苷II(PICII),从苦参中提取,已经证明了治疗各种肝损伤的潜力。然而,巨噬细胞极化启动免疫级联反应并促进肝纤维化发展的机制,以及这个过程是否会受到PICII的影响,仍然不清楚。在目前的研究中,RNA测序和多种分子方法被用来探索PICII对抗多药耐药蛋白2敲除(Mdr2-/-)小鼠肝纤维化的潜在机制。我们的发现表明,PICII激活M1极化的巨噬细胞招募自然杀伤细胞(NK细胞),可能通过CXCL16-CXCR6轴。此外,PICII促进活化肝星状细胞(aHSC)的凋亡,增强NK细胞的细胞毒作用,同时也减少了中性粒细胞胞外陷阱(NET)的形成。值得注意的是,Mdr2-/-小鼠的巨噬细胞耗竭在很大程度上逆转了与PICII相关的抗肝纤维化作用.总的来说,我们的研究表明,PICII是阻止肝纤维化进展的潜在候选者.
    Liver fibrosis is characterized by chronic inflammatory responses and progressive fibrous scar formation. Macrophages play a central role in the pathogenesis of hepatic fibrosis by reconstructing the immune microenvironment. Picroside II (PIC II), extracted from Picrorhizae Rhizoma, has demonstrated therapeutic potential for various liver damage. However, the mechanisms by which macrophage polarization initiates immune cascades and contributes to the development of liver fibrosis, and whether this process can be influenced by PIC II, remain unclear. In the current study, RNA sequencing and multiple molecular approaches were utilized to explore the underlying mechanisms of PIC II against liver fibrosis in multidrug-resistance protein 2 knockout (Mdr2-/-) mice. Our findings indicate that PIC II activates M1-polarized macrophages to recruit natural killer cells (NK cells), potentially via the CXCL16-CXCR6 axis. Additionally, PIC II promotes the apoptosis of activated hepatic stellate cells (aHSCs) and enhances the cytotoxic effects of NK cells, while also reducing the formation of neutrophil extracellular traps (NETs). Notably, the anti-hepatic fibrosis effects associated with PIC II were largely reversed by macrophage depletion in Mdr2-/- mice. Collectively, our research suggests that PIC II is a potential candidate for halting the progression of liver fibrosis.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    水杨酸(SA)作为一种激素在植物中起着至关重要的作用,属于酚类化合物。我们的目标是确定SA的最佳浓度,以增强Agastacherugosa植物中生物活性化合物的产生,同时保持最佳的植物生长。对植物进行了不同浓度的SA浸泡处理(即,0、100、200、400、800和1600μmolmol-1)在移植后7天10分钟。我们观察到800和1600μmol-1的SA水平升高会引起氧化应激,导致许多植物生长变量的显著减少,包括叶子长度,宽度,number,area,射击鲜重(FW),茎FW和长度,和整株植物干重(DW)与对照植物相比。此外,用1600μmolmol-1SA处理导致花枝数的最低值,花的FW和DW,和叶子的DW,茎,和根。相反,施用400μmol-1的SA导致叶绿素(Chl)a和b的最大增加,总Chl,总黄酮,总类胡萝卜素,和SPAD值。光合速率和气孔导度随着SA浓度的增加而降低(即,800和1600μmol-1)。此外,较高的SA处理(即,400、800和1600μmol-1)提高了酚类含量,几乎所有的SA处理都增加了抗氧化能力。迷迭香酸含量在200μmol-1SA处理下达到峰值。然而,在400μmol-1SA下,tilianin和acacetin含量达到最高水平。这些发现表明,将根浸入200和400μmol-1SA中可以增强水培培养的红花中生物活性化合物的产生,而不会损害植物的生长。总的来说,这些发现提供了有关SA对A的影响的有价值的见解。rugosa及其对药用植物种植和植物化学生产的潜在影响。
    Salicylic acid (SA) plays a crucial role as a hormone in plants and belongs to the group of phenolic compounds. Our objective was to determine the optimal concentration of SA for enhancing the production of bioactive compounds in Agastache rugosa plants while maintaining optimal plant growth. The plants underwent SA soaking treatments at different concentrations (i.e., 0, 100, 200, 400, 800, and 1600 μmol mol-1) for 10 min at 7 days after they were transplanted. We observed that elevated levels of SA at 800 and 1600 μmol mol-1 induced oxidative stress, leading to a significant reduction across many plant growth variables, including leaf length, width, number, area, shoot fresh weight (FW), stem FW and length, and whole plant dry weights (DW) compared with that in the control plants. Additionally, the treatment with 1600 μmol mol-1 SA resulted in the lowest values of flower branch number, FW and DW of flowers, and DW of leaf, stem, and root. Conversely, applying 400 μmol mol-1 SA resulted in the greatest increase of chlorophyll (Chl) a and b, total Chl, total flavonoid, total carotenoid, and SPAD values. The photosynthetic rate and stomatal conductance decreased with increased SA concentrations (i.e., 800 and 1600 μmol mol-1). Furthermore, the higher SA treatments (i.e., 400, 800, and 1600 μmol mol-1) enhanced the phenolic contents, and almost all SA treatments increased the antioxidant capacity. The rosmarinic acid content peaked under 200 μmol mol-1 SA treatment. However, under 400 μmol mol-1 SA, tilianin and acacetin contents reached their highest levels. These findings demonstrate that immersing the roots in 200 and 400  μmol mol-1 SA enhances the production of bioactive compounds in hydroponically cultivated A. rugosa without compromising plant growth. Overall, these findings provide valuable insights into the impact of SA on A. rugosa and its potential implications for medicinal plant cultivation and phytochemical production.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

公众号