Actin cytoskeleton

肌动蛋白细胞骨架
  • 文章类型: Journal Article
    树突棘的形态,大多数兴奋性突触的突触后室,决定性地调节神经元回路的功能,从与脊柱密度或形态改变相关的人脑疾病中也可以看出。肌动蛋白丝(F-肌动蛋白)形成棘的骨架,和许多肌动蛋白结合蛋白(ABP)与成熟棘的细胞骨架形成有关。相反,关于控制从未成熟棘的无分支F-肌动蛋白到复合体的重组的机制知之甚少,成熟棘的高度分枝的细胞骨架。这里,我们证明了环化酶相关蛋白1(CAP1)和CAP2基因失活后海马神经元的脊柱成熟受损,但不是单独的CAP1或CAP2.我们发现了一个类似的脊柱成熟缺陷在过度激活倒置2(INF2),无分支的F-肌动蛋白的核子,具有迄今未知的突触功能。虽然INF2过度激活未能改变CAP缺陷神经元的脊柱密度或形态,INF2失活在很大程度上挽救了他们的脊柱缺陷。根据我们的数据,我们得出结论,CAPs抑制INF2以诱导脊柱成熟。由于我们以前表明CAPs促进cofilin1介导的成熟棘细胞骨架重塑,我们认为它们是一种分子开关,可以控制从丝状类棘到成熟棘的转变。
    The morphology of dendritic spines, the postsynaptic compartment of most excitatory synapses, decisively modulates the function of neuronal circuits as also evident from human brain disorders associated with altered spine density or morphology. Actin filaments (F-actin) form the backbone of spines, and a number of actin-binding proteins (ABP) have been implicated in shaping the cytoskeleton in mature spines. Instead, only little is known about the mechanisms that control the reorganization from unbranched F-actin of immature spines to the complex, highly branched cytoskeleton of mature spines. Here, we demonstrate impaired spine maturation in hippocampal neurons upon genetic inactivation of cyclase-associated protein 1 (CAP1) and CAP2, but not of CAP1 or CAP2 alone. We found a similar spine maturation defect upon overactivation of inverted formin 2 (INF2), a nucleator of unbranched F-actin with hitherto unknown synaptic function. While INF2 overactivation failed in altering spine density or morphology in CAP-deficient neurons, INF2 inactivation largely rescued their spine defects. From our data we conclude that CAPs inhibit INF2 to induce spine maturation. Since we previously showed that CAPs promote cofilin1-mediated cytoskeletal remodeling in mature spines, we identified them as a molecular switch that control transition from filopodia-like to mature spines.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    基于肌动蛋白和微管(MT)的运输系统对于细胞内运输至关重要。在甲型流感病毒(IAV)感染期间,MTs为病毒向细胞核贩运提供了很长的踪迹。然而,肌动蛋白细胞骨架在IAV进入,特别是转运过程中的作用仍然不明确。这里,通过使用基于量子点的单病毒跟踪,结果表明,肌动蛋白细胞骨架对于通过网格蛋白介导的内吞作用(CME)进入病毒至关重要。通过CME进入后,病毒通过三种不同的途径到达MTs:病毒(1)由肌球蛋白VI驱动,沿着肌动蛋白丝移动,到达MTs(AF);(2)由Arp2/3依赖性机制组装的肌动蛋白尾推动,到达MTs(AT);(3)直接到达MTs,而没有发生与肌动蛋白相关的运动(NA).因此,NA途径是病毒到达MTs的主要途径,也是最快的途径。只有当大量病毒进入细胞时,AT途径才被激活。通过AF和AT途径运输的病毒具有相似的移动速度,持续时间,和流离失所。这项研究全面可视化了肌动蛋白细胞骨架在IAV进入和运输中的作用,揭示IAV进入后到达MTs的不同途径。该结果对于全球了解IAV感染和细胞内吞转运途径具有重要意义。
    Actin- and microtubule (MT)-based transport systems are essential for intracellular transport. During influenza A virus (IAV) infection, MTs provide long tracks for virus trafficking toward the nucleus. However, the role of the actin cytoskeleton in IAV entry and especially the transit process is still ambiguous. Here, by using quantum dot-based single-virus tracking, it was revealed that the actin cytoskeleton was crucial for the virus entry via clathrin-mediated endocytosis (CME). After entry via CME, the virus reached MTs through three different pathways: the virus (1) was driven by myosin VI to move along actin filaments to reach MTs (AF); (2) was propelled by actin tails assembled by an Arp2/3-dependent mechanism to reach MTs (AT); and (3) directly reached MTs without experiencing actin-related movement (NA). Therefore, the NA pathway was the main one and the fastest for the virus to reach MTs. The AT pathway was activated only when plenty of viruses entered the cell. The viruses transported by the AF and AT pathways shared similar moving velocities, durations, and displacements. This study comprehensively visualized the role of the actin cytoskeleton in IAV entry and transport, revealing different pathways for IAV to reach MTs after entry. The results are of great significance for globally understanding IAV infection and the cellular endocytic transport pathway.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    肌动蛋白流指的是F-肌动蛋白细胞骨架的运动,并已在许多不同的细胞类型中观察到,尤其是在活动细胞中,包括神经元生长锥。肌动蛋白流的方向通常从细胞的外围向中心逆行。肌动蛋白流可通过底物-细胞骨架偶联用于细胞的向前运动;因此,肌动蛋白流的一个关键功能是细胞运动。在这一章中,我们说明了三种不同的方法来定量从培养的Aplysia袋细胞神经元衍生的生长锥中的逆行F-肌动蛋白流。这些方法包括跟踪表面标记珠的移动以及通过差分干涉对比(DIC)成像或荧光斑点显微镜(FSM)获得的延时序列的测速分析。由于尺寸大,Aplysia神经元生长锥是唯一适合这些方法;然而,它们也可以应用于具有清晰的富含F-肌动蛋白的外周结构域的任何其他生长锥。
    Actin flow refers to the motion of the F-actin cytoskeleton and has been observed in many different cell types, especially in motile cells including neuronal growth cones. The direction of the actin flow is generally retrograde from the periphery toward the center of the cell. Actin flow can be harnessed for forward movement of the cell through substrate-cytoskeletal coupling; thus, a key function of actin flow is in cell locomotion. In this chapter, we illustrate three different methods of quantifying retrograde F-actin flow in growth cones derived from cultured Aplysia bag cell neurons. These methods include tracking the movement of surface marker beads as well as kymograph analysis of time-lapse sequences acquired by differential interference contrast (DIC) imaging or fluorescent speckle microscopy (FSM). Due to their large size, Aplysia neuronal growth cones are uniquely suited for these methods; however, they can also be applied to any other growth cones with clear F-actin-rich peripheral domains.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    突触传递的可塑性是学习和记忆的基础。它伴随着突触密度和大小的变化,统称为结构可塑性。因此,理解结构可塑性的机制对于理解突触可塑性的机制至关重要。在这一章中,我们描述了成像单个树突脊柱的结构可塑性所需的程序和设备,它在中枢神经系统中拥有兴奋性突触,以及使用双光子荧光寿命显微镜(2P-FLIM)与基于Förster共振能量转移(FRET)的生物传感器相结合的潜在分子相互作用/生化反应。
    Plasticity of synaptic transmission underlies learning and memory. It is accompanied by changes in the density and size of synapses, collectively called structural plasticity. Therefore, understanding the mechanism of structural plasticity is critical for understanding the mechanism of synaptic plasticity. In this chapter, we describe the procedures and equipment required to image structural plasticity of a single dendritic spine, which hosts excitatory synapses in the central nervous system, and underlying molecular interactions/biochemical reactions using two-photon fluorescence lifetime microscopy (2P-FLIM) in combination with Förster resonance energy transfer (FRET)-based biosensors.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    肌动蛋白调节蛋白的行为和存在是各种临床疾病的特征。这些蛋白质的变化显著影响细胞骨架和再生过程潜在的病理变化。垂体腺苷酸环化酶激活多肽(PACAP),一种在神经系统和内分泌器官中丰富的细胞保护神经肽,通过影响肌动蛋白在神经元分化和迁移中起关键作用。本研究旨在阐明PACAP作为肌动蛋白调节多肽的作用。它对肌动蛋白丝形成的影响,以及潜在的监管机制。我们检查了PACAP27,PACAP38和PACAP6-38,通过荧光光谱法和稳态各向异性测量了它们与肌动蛋白单体的结合。使用官能聚合测试来跟踪荧光强度随时间的变化。与PACAP27不同,PACAP38和PACAP6-38显着降低了Alexa488标记的肌动蛋白单体的荧光发射,并增加了其各向异性,显示几乎相同的解离平衡常数。PACAP27显示与球状肌动蛋白(G-肌动蛋白)的弱结合,而PACAP38和PACAP6-38表现出强烈的相互作用。PACAP27不影响肌动蛋白聚合,但PACAP38和PACAP6-38加速肌动蛋白掺入动力学。荧光猝灭实验证实了PACAP结合后的结构变化;然而,所有研究的PACAP片段表现出相同的效果。我们的发现表明,PACAP38和PACAP6-38与G-肌动蛋白强烈结合,并显着影响肌动蛋白的聚合。需要进一步的研究来充分理解这些相互作用的生物学意义。
    The behavior and presence of actin-regulating proteins are characteristic of various clinical diseases. Changes in these proteins significantly impact the cytoskeletal and regenerative processes underlying pathological changes. Pituitary adenylate cyclase-activating polypeptide (PACAP), a cytoprotective neuropeptide abundant in the nervous system and endocrine organs, plays a key role in neuron differentiation and migration by influencing actin. This study aims to elucidate the role of PACAP as an actin-regulating polypeptide, its effect on actin filament formation, and the underlying regulatory mechanisms. We examined PACAP27, PACAP38, and PACAP6-38, measuring their binding to actin monomers via fluorescence spectroscopy and steady-state anisotropy. Functional polymerization tests were used to track changes in fluorescent intensity over time. Unlike PACAP27, PACAP38 and PACAP6-38 significantly reduced the fluorescence emission of Alexa488-labeled actin monomers and increased their anisotropy, showing nearly identical dissociation equilibrium constants. PACAP27 showed weak binding to globular actin (G-actin), while PACAP38 and PACAP6-38 exhibited robust interactions. PACAP27 did not affect actin polymerization, but PACAP38 and PACAP6-38 accelerated actin incorporation kinetics. Fluorescence quenching experiments confirmed structural changes upon PACAP binding; however, all studied PACAP fragments exhibited the same effect. Our findings indicate that PACAP38 and PACAP6-38 strongly bind to G-actin and significantly influence actin polymerization. Further studies are needed to fully understand the biological significance of these interactions.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    MICAL蛋白代表了对突触发育至关重要的肌动蛋白调节因子的独特家族,膜贩运,和胞质分裂。与经典的肌动蛋白调节剂不同,MICAL催化肌动蛋白丝内特定残基的氧化,以诱导强大的丝分解。MICAL的有效活性需要严格控制以防止对肌动蛋白细胞骨架的广泛损害。然而,控制MICALS活性调节的分子机制仍然难以捉摸。这里,我们报告了MICAL1在自抑制状态下的低温EM结构,揭示了一种变构阻断酶活性的头对尾相互作用。该结构还揭示了通过三部分域间相互作用的C端结构域的组装,稳定RBD的抑制构象。我们的结构,生物化学,和细胞分析阐明了一种多步骤机制来缓解MICAL1自动抑制,以响应两个Rab效应子的双重结合,揭示了其复杂的活动调节机制。此外,我们对MICAL3的诱变研究表明MICAL3中保守的自抑制和缓解机制。
    MICAL proteins represent a unique family of actin regulators crucial for synapse development, membrane trafficking, and cytokinesis. Unlike classical actin regulators, MICALs catalyze the oxidation of specific residues within actin filaments to induce robust filament disassembly. The potent activity of MICALs requires tight control to prevent extensive damage to actin cytoskeleton. However, the molecular mechanism governing MICALs\' activity regulation remains elusive. Here, we report the cryo-EM structure of MICAL1 in the autoinhibited state, unveiling a head-to-tail interaction that allosterically blocks enzymatic activity. The structure also reveals the assembly of C-terminal domains via a tripartite interdomain interaction, stabilizing the inhibitory conformation of the RBD. Our structural, biochemical, and cellular analyses elucidate a multi-step mechanism to relieve MICAL1 autoinhibition in response to the dual-binding of two Rab effectors, revealing its intricate activity regulation mechanisms. Furthermore, our mutagenesis study of MICAL3 suggests the conserved autoinhibition and relief mechanisms among MICALs.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    真核细胞已经进化了数十亿年,产生了多种多样的细胞形式和功能。尽管它们的可变性,所有真核细胞都有共同的关键标志,包括膜结合的细胞器,严重调节的细胞骨架网络和复杂的信号级联。因为肌动蛋白细胞骨架与这些特征中的每一个接口,了解它是如何在整个真核生物门进化和多样化是必不可少的,以了解进化和多样化的真核细胞本身。这里,我们讨论我们对肌动蛋白网络的起源和多样性的了解,结构和监管,以及肌动蛋白的进化如何促进真核生物形式和功能的多样性。
    Eukaryotic cells have been evolving for billions of years, giving rise to wildly diverse cell forms and functions. Despite their variability, all eukaryotic cells share key hallmarks, including membrane-bound organelles, heavily regulated cytoskeletal networks and complex signaling cascades. Because the actin cytoskeleton interfaces with each of these features, understanding how it evolved and diversified across eukaryotic phyla is essential to understanding the evolution and diversification of eukaryotic cells themselves. Here, we discuss what we know about the origin and diversity of actin networks in terms of their compositions, structures and regulation, and how actin evolution contributes to the diversity of eukaryotic form and function.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    运动细胞中的力是如何产生的基本问题,一片薄片,彗星的尾巴是本文的主题。现在已经确定细胞运动性是由肌动蛋白的聚合引起的,真核细胞中最丰富的蛋白质,成一组相互连接的细丝。我们在连续力学框架中描绘了这个过程,声称聚合会促进成核位点周围狭窄区域的机械溶胀,最终导致细胞或细菌运动。为了这个目标,已经设计了连续多物理的新范式,背离了著名的Larché-Cahn化学输运力学理论。在本说明中,我们建立了网络增长理论,并将数值模拟的结果与实验证据进行了比较。
    The fundamental question of how forces are generated in a motile cell, a lamellipodium, and a comet tail is the subject of this note. It is now well established that cellular motility results from the polymerization of actin, the most abundant protein in eukaryotic cells, into an interconnected set of filaments. We portray this process in a continuum mechanics framework, claiming that polymerization promotes a mechanical swelling in a narrow zone around the nucleation loci, which ultimately results in cellular or bacterial motility. To this aim, a new paradigm in continuum multi-physics has been designed, departing from the well-known theory of Larché-Cahn chemo-transport-mechanics. In this note, we set up the theory of network growth and compare the outcomes of numerical simulations with experimental evidence.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    肌动蛋白重塑蛋白在免疫性疾病中起重要作用,并调节细胞骨架反应。这些反应在维持生物事件的微妙平衡中起着关键作用,在一系列疾病中预防急性或慢性炎症。Cofilin(CFL)和肌动蛋白解聚因子(ADF)是有效的肌动蛋白结合蛋白,可切割和解聚肌动蛋白丝以产生肌动蛋白细胞骨架动力学。尽管肌动蛋白诱导肌动蛋白细胞骨架重建的分子机制已经研究了几十年,肌动蛋白在炎症过程中的调节直到最近才变得明显。在本文中,简要介绍了肌动蛋白细胞骨架和ADF/cofilin超家族成员的功能,然后重点研究CFL1在炎症反应中的作用。
    Actin remodeling proteins are important in immune diseases and regulate cell cytoskeletal responses. These responses play a pivotal role in maintaining the delicate balance of biological events, protecting against acute or chronic inflammation in a range of diseases. Cofilin (CFL) and actin depolymerization factor (ADF) are potent actin-binding proteins that cut and depolymerize actin filaments to generate actin cytoskeleton dynamics. Although the molecular mechanism by which actin induces actin cytoskeletal reconstitution has been studied for decades, the regulation of actin in the inflammatory process has only recently become apparent. In this paper, the functions of the actin cytoskeleton and ADF/cofilin superfamily members are briefly introduced, and then focus on the role of CFL1 in inflammatory response.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    许多细胞骨架网络由单个细丝组成,这些细丝被组织成精细的高阶结构。虽然人们认识到这些网络的大小和架构对它们的生物学功能至关重要,研究对其组装控制的大部分工作都集中在通过大小依赖性反馈来调节单个细丝的周转的机制上。这里,我们提出了一个非常不同的,不依赖反馈的机制来解释酵母细胞如何控制其肌动蛋白电缆的长度。我们的发现,由定量细胞成像和数学建模支持,表明肌动蛋白电缆长度控制是由于电缆内细丝的交联和成束组织而产生的新兴特性。使用这个模型,我们进一步剖析了允许电缆在较大细胞中生长更长的机制,并提出了依赖于细胞长度的formin活性调节允许细胞根据细胞长度缩放电缆长度。这种机制与先前的细胞骨架丝长度控制模型有很大的不同,并提出了一种不同的范式来考虑细胞如何控制大小。形状,和高阶细胞骨架结构的动力学。
    Many cytoskeletal networks consist of individual filaments that are organized into elaborate higher-order structures. While it is appreciated that the size and architecture of these networks are critical for their biological functions, much of the work investigating control over their assembly has focused on mechanisms that regulate the turnover of individual filaments through size-dependent feedback. Here, we propose a very different, feedback-independent mechanism to explain how yeast cells control the length of their actin cables. Our findings, supported by quantitative cell imaging and mathematical modeling, indicate that actin cable length control is an emergent property that arises from the cross-linked and bundled organization of the filaments within the cable. Using this model, we further dissect the mechanisms that allow cables to grow longer in larger cells and propose that cell length-dependent tuning of formin activity allows cells to scale cable length with cell length. This mechanism is a significant departure from prior models of cytoskeletal filament length control and presents a different paradigm to consider how cells control the size, shape, and dynamics of higher-order cytoskeletal structures.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

公众号