rice

大米
  • 文章类型: Journal Article
    编码9-顺式-环氧类胡萝卜素双加氧酶3(NCED3)的基因在脱落酸(ABA)生物合成中起作用,植物生长发育,和对不利温度的耐受性,干旱和盐水条件。在这项研究中,使用三个水稻品系来探索OsNCED3的功能,其中包括OsNCED3过表达品系(OsNCED3-OE),敲除系(osnced3-RNAi)和野生型水稻(WT)。这些水稻品系被棕色植物料斗(BPH;Nilapavatalugens)侵染,并检查生理和生化变化,激素含量,和防御基因表达。结果表明,OsNCED3激活了水稻防御机制,导致超氧化物歧化酶的防御酶活性增加,过氧化物酶,和多酚氧化酶。OsNCED3的过表达减少了飞虱的数量,降低了产卵和BPH孵化率。此外,OsNCED3的过表达增加了茉莉酸的浓度,相对于WT水稻和osnced3-RNAi系,茉莉酰基-异亮氨酸和ABA。这些结果表明,OsNCED3提高了水稻的抗逆性,并支持茉莉酸和ABA作为防御化合物在水稻-BPH相互作用中的作用。
    The gene encoding 9-cis-epoxycarotenoid dioxygenase 3 (NCED3) functions in abscisic acid (ABA) biosynthesis, plant growth and development, and tolerance to adverse temperatures, drought and saline conditions. In this study, three rice lines were used to explore the function of OsNCED3, these included an OsNCED3-overexpressing line (OsNCED3-OE), a knockdown line (osnced3-RNAi) and wild-type rice (WT). These rice lines were infested with the brown plant hopper (BPH; Nilaparvata lugens) and examined for physiological and biochemical changes, hormone content, and defense gene expression. The results showed that OsNCED3 activated rice defense mechanisms, which led to an increased defense enzyme activity of superoxide dismutase, peroxidase, and polyphenol oxidase. The overexpression of OsNCED3 decreased the number of planthoppers and reduced oviposition and BPH hatching rates. Furthermore, the overexpression of OsNCED3 increased the concentrations of jasmonic acid, jasmonyl-isoleucine and ABA relative to WT rice and the osnced3-RNAi line. These results indicate that OsNCED3 improved the stress tolerance in rice and support a role for both jasmonates and ABA as defense compounds in the rice-BPH interaction.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    基因组编辑,特别是使用CRISPR/Cas系统,彻底改变了生物研究和作物改良。尽管CRISPR/Cas9的广泛使用,但它面临着诸如PAM序列要求和将其大蛋白递送到植物细胞中的挑战等限制。超小型Cas12f,衍生自酸性硫氧化杆菌(AsCas12f),由于其仅422个氨基酸的小尺寸以及对富含T的基序的偏好而脱颖而出,提供优于SpCas9的优势功能。然而,它的编辑效率在植物中非常低。最近的研究产生了两个AsCas12f变体,AsCas12f-YHAM和AsCas12f-HKRA,在哺乳动物细胞中展示更高的编辑效率,然而它们在植物中的表现仍未被探索。在这项研究中,通过对水稻基因组切割活性的系统研究,我们公布了两个AsCas12f变体的编辑效率的大幅提升,特别是对于AsCas12f-HKRA,实现了高达53%的编辑效率。此外,我们的分析表明,AsCas12f主要诱导靶DNA的缺失,显示出独特的缺失模式,主要集中在位置12、13、23和24,导致缺失大小主要为10和11bp,提示使用AsCas12f进行靶向DNA缺失的巨大潜力。这些发现扩展了植物高效基因组编辑的工具箱,为农业中的精确遗传修饰提供了有希望的前景。
    在线版本包含补充材料,可在10.1007/s42994-024-00168-2获得。
    Genome editing, particularly using the CRISPR/Cas system, has revolutionized biological research and crop improvement. Despite the widespread use of CRISPR/Cas9, it faces limitations such as PAM sequence requirements and challenges in delivering its large protein into plant cells. The hypercompact Cas12f, derived from Acidibacillus sulfuroxidans (AsCas12f), stands out due to its small size of only 422 amino acids and its preference for a T-rich motif, presenting advantageous features over SpCas9. However, its editing efficiency is extremely low in plants. Recent studies have generated two AsCas12f variants, AsCas12f-YHAM and AsCas12f-HKRA, demonstrating higher editing efficiencies in mammalian cells, yet their performance in plants remains unexplored. In this study, through a systematic investigation of genome cleavage activity in rice, we unveiled a substantial enhancement in editing efficiency for both AsCas12f variants, particularly for AsCas12f-HKRA, which achieved an editing efficiency of up to 53%. Furthermore, our analysis revealed that AsCas12f predominantly induces deletion in the target DNA, displaying a unique deletion pattern primarily concentrated at positions 12, 13, 23, and 24, resulting in deletion size mainly of 10 and 11 bp, suggesting significant potential for targeted DNA deletion using AsCas12f. These findings expand the toolbox for efficient genome editing in plants, offering promising prospects for precise genetic modifications in agriculture.
    UNASSIGNED: The online version contains supplementary material available at 10.1007/s42994-024-00168-2.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    CRISPR-Cas基因组编辑工具以其简单和精确的修饰靶基因组基因座的能力正在彻底改变农业和基础生物学。软件预测的指导RNA(gRNA)通常不能在靶基因座处诱导有效切割。由于复杂的染色质结构,许多靶基因座是不可接近的。目前,没有合适的工具可用于预测基因组靶位点的结构及其可达性。因此,大量的时间和资源花费在执行编辑实验与低效的指南。尽管体外切割测定可以提供gRNA效率的粗略评估,它在很大程度上排除了天然基因组背景的干扰。瞬时体内测试给出了在天然基因组背景下编辑试剂的切割能力的适当评估。这里,我们开发了一种改进的协议,提供高效的原生质体分离水稻,拟南芥,还有鹰嘴豆,使用蔗糖梯度,使用PEG(聚乙二醇)转染,和验证CRISPR-Cas9的单指导RNA(sgRNA)切割效率。我们已经优化了PEG介导的原生质体转染的各种参数,并使用我们的方案在单子叶植物和双子叶植物中均实现了高转染效率。我们在水稻中引入了含有Cas9和sgRNA靶向基因的质粒载体,拟南芥,和鹰嘴豆原生质体。使用双重sgRNA,我们的CRISPR缺失策略可通过简单的琼脂糖凝胶电泳直接检测基因组编辑的成功.PCR产物的Sanger测序证实了特定sgRNA的编辑效率。值得注意的是,我们证明,分离的原生质体可以储存长达24/48小时,几乎没有活力损失,允许分离和转染之间的暂停。这种用于原生质体分离和转染的高效方案能够在进行稳定转化之前快速(少于7天)验证sgRNA切割效率。分离和转染方法也可用于编辑策略的快速验证,评估不同的编辑试剂,从转染的原生质体再生植物,基因表达研究,蛋白质定位和功能分析,和其他应用。
    在线版本包含补充材料,可在10.1007/s42994-024-00139-7获得。
    The CRISPR-Cas genome editing tools are revolutionizing agriculture and basic biology with their simplicity and precision ability to modify target genomic loci. Software-predicted guide RNAs (gRNAs) often fail to induce efficient cleavage at target loci. Many target loci are inaccessible due to complex chromatin structure. Currently, there is no suitable tool available to predict the architecture of genomic target sites and their accessibility. Hence, significant time and resources are spent on performing editing experiments with inefficient guides. Although in vitro-cleavage assay could provide a rough assessment of gRNA efficiency, it largely excludes the interference of native genomic context. Transient in-vivo testing gives a proper assessment of the cleavage ability of editing reagents in a native genomic context. Here, we developed a modified protocol that offers highly efficient protoplast isolation from rice, Arabidopsis, and chickpea, using a sucrose gradient, transfection using PEG (polyethylene glycol), and validation of single guide RNAs (sgRNAs) cleavage efficiency of CRISPR-Cas9. We have optimized various parameters for PEG-mediated protoplast transfection and achieved high transfection efficiency using our protocol in both monocots and dicots. We introduced plasmid vectors containing Cas9 and sgRNAs targeting genes in rice, Arabidopsis, and chickpea protoplasts. Using dual sgRNAs, our CRISPR-deletion strategy offers straightforward detection of genome editing success by simple agarose gel electrophoresis. Sanger sequencing of PCR products confirmed the editing efficiency of specific sgRNAs. Notably, we demonstrated that isolated protoplasts can be stored for up to 24/48 h with little loss of viability, allowing a pause between isolation and transfection. This high-efficiency protocol for protoplast isolation and transfection enables rapid (less than 7 days) validation of sgRNA cleavage efficiency before proceeding with stable transformation. The isolation and transfection method can also be utilized for rapid validation of editing strategies, evaluating diverse editing reagents, regenerating plants from transfected protoplasts, gene expression studies, protein localization and functional analysis, and other applications.
    UNASSIGNED: The online version contains supplementary material available at 10.1007/s42994-024-00139-7.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    广泛使用的成簇的规则间隔短回文重复序列(CRISPR)/CRISPR相关核酸酶(Cas)系统被认为是从IS200/IS605转座子进化而来的。TnpB蛋白,由一种类型的IS200/IS605转座子编码,被认为是Cas12核酸酶的进化祖先,这些酶被设计为RNA指导的DNA核酸内切酶,用于细菌和人类细胞的基因组编辑。TnpB核酸酶,比Cas核酸酶小,已经被设计用于动物系统的基因组编辑,但是这种方法在植物中的可行性仍然未知。这里,通过采用三个最近鉴定的TnpB基因组编辑载体,我们获得了水稻(Oryzasativa)中稳定转化的基因组编辑突变体,编码不同的TnpB核酸酶(ISAam1,ISDra2和ISYmu1),用于植物,证明超紧密TnpB蛋白可以有效编辑植物基因组。ISDra2和ISYmu1精确编辑了它们的靶序列,没有检测到脱靶突变,表明TnpB转座子核酸酶适合开发为植物的新基因组编辑工具。改善TnpB系统基因组编辑效率的未来修改将促进植物功能研究和育种计划。
    在线版本包含补充材料,可在10.1007/s42994-024-00172-6获得。
    The widely used clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated nuclease (Cas) system is thought to have evolved from IS200/IS605 transposons. TnpB proteins, encoded by one type of IS200/IS605 transposon, are considered to be the evolutionary ancestors of Cas12 nucleases, which have been engineered to function as RNA-guided DNA endonucleases for genome editing in bacteria and human cells. TnpB nucleases, which are smaller than Cas nucleases, have been engineered for use in genome editing in animal systems, but the feasibility of this approach in plants remained unknown. Here, we obtained stably transformed genome-edited mutants in rice (Oryza sativa) by adapting three recently identified TnpB genome editing vectors, encoding distinct TnpB nucleases (ISAam1, ISDra2, and ISYmu1), for use in plants, demonstrating that the hypercompact TnpB proteins can effectively edit plant genomes. ISDra2 and ISYmu1 precisely edited their target sequences, with no off-target mutations detected, showing that TnpB transposon nucleases are suitable for development into a new genome editing tool for plants. Future modifications improving the genome-editing efficiency of the TnpB system will facilitate plant functional studies and breeding programs.
    UNASSIGNED: The online version contains supplementary material available at 10.1007/s42994-024-00172-6.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    转座因子(TE)是普遍存在的基因组成分,由于高度重复而难以研究。在这里,我们根据长读数测序数据组装了232个染色体水平的基因组。将232个基因组与15个现有组件耦合,我们开发了一个pan-TE地图,包括栽培和野生亚洲水稻。我们检测到177.084个高质量的TE变异,并使用外群推断它们的派生状态。我们发现TEs是水稻驯化和分化过程中表型变异的来源之一。我们确定了1246个基因,其表达变异与TE相关,但与单核苷酸多态性(SNP)无关。比如OsRbohB,并使用双荧光素酶(LUC)报告测定系统验证了OsRbohB的相对表达活性。我们的pan-TE图谱使我们能够检测到与农艺性状相关的多个新基因座。总的来说,我们的发现强调了TEs对驯化的贡献,水稻的分化和农艺性状,通过我们生成的高质量亚洲泛TE图谱,基因克隆和分子育种具有巨大潜力。
    Transposable elements (TEs) are ubiquitous genomic components and hard to study due to being highly repetitive. Here we assembled 232 chromosome-level genomes based on long-read sequencing data. Coupling the 232 genomes with 15 existing assemblies, we developed a pan-TE map comprising both cultivated and wild Asian rice. We detected 177 084 high-quality TE variations and inferred their derived state using outgroups. We found TEs were one source of phenotypic variation during rice domestication and differentiation. We identified 1246 genes whose expression variation was associated with TEs but not single-nucleotide polymorphisms (SNPs), such as OsRbohB, and validated OsRbohB\'s relative expression activity using a dual-Luciferase (LUC) reporter assays system. Our pan-TE map allowed us to detect multiple novel loci associated with agronomic traits. Collectively, our findings highlight the contributions of TEs to domestication, differentiation and agronomic traits in rice, and there is massive potential for gene cloning and molecular breeding by the high-quality Asian pan-TE map we generated.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    水稻是世界上最重要和经济上最重要的粮食作物。气候变化和生态失衡使水稻容易受到非生物和生物胁迫,威胁全球粮食安全。Alfin-like(AL)转录因子家族在植物发育和逆境反应中起着至关重要的作用。本研究全面分析了该基因家族及其在水稻中的表达谱,揭示了九个AL基因,根据系统发育分析将它们分为三个不同的组,并确定了四个节段重复事件。RNA-seq数据分析显示OsALs在不同组织中的高表达水平,生长阶段,以及他们对压力的反应。RT-qPCR数据显示OsALs在不同非生物胁迫中显著表达。启动子区域中潜在顺式调控元件的鉴定也揭示了它们的参与。预测了蛋白质的三级结构。这些发现将为进一步研究揭示其在抗逆性和植物发育中的分子机制奠定基础。
    Oryza sativa L. is the world\'s most essential and economically important food crop. Climate change and ecological imbalances make rice plants vulnerable to abiotic and biotic stresses, threatening global food security. The Alfin-like (AL) transcription factor family plays a crucial role in plant development and stress responses. This study comprehensively analyzed this gene family and their expression profiles in rice, revealing nine AL genes, classifying them into three distinct groups based on phylogenetic analysis and identifying four segmental duplication events. RNA-seq data analysis revealed high expression levels of OsALs in different tissues, growth stages, and their responsiveness to stresses. RT-qPCR data showed significant expression of OsALs in different abiotic stresses. Identification of potential cis-regulatory elements in promoter regions has also unveiled their involvement. Tertiary structures of the proteins were predicted. These findings would lay the groundwork for future research to reveal their molecular mechanism in stress tolerance and plant development.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    镉污染严重威胁着食品安全和人类健康。最大限度地减少植物对Cd的吸收和增强植物对Cd的耐受性对于提高作物产量和减少对人类的危害至关重要。在这项研究中,我们设计了三种Cd浓度胁迫处理(Cd1:0.20mg·kg-1,Cd2:0.60mg·kg-1和Cd3:1.60mg·kg-1)和两种叶面硅(Si)处理(CK:不喷涂任何材料,和Si:叶面Si喷施)进行土壤Cd胁迫的盆栽实验。结果表明,喷施Si可使糙米中Cd含量降低4.79~42.14%。施硅使净光合速率(Pn)提高1.77-4.08%,气孔导度(Gs)5.27-23.43%,蒸腾速率(Tr)为2.99-20.50%,胞间二氧化碳(CO2)浓度(Ci)为6.55-8.84%。叶面喷施Si可显著提高水稻叶片中超氧化物歧化酶(SOD)和过氧化物酶(POD)的活性,分别提高9.84-14.09%和4.69-53.09%,分别,丙二醛(MDA)含量降低7.83-48.72%。总之,叶面喷施硅保护水稻冠层叶片的光合作用和抗氧化系统,是降低糙米中Cd含量的有效方法。
    Cadmium (Cd) pollution is a serious threat to food safety and human health. Minimizing Cd uptake and enhancing Cd tolerance in plants are vital to improve crop yield and reduce hazardous effects to humans. In this study, we designed three Cd concentration stress treatments (Cd1: 0.20 mg·kg-1, Cd2: 0.60 mg·kg-1, and Cd3: 1.60 mg·kg-1) and two foliar silicon (Si) treatments (CK: no spraying of any material, and Si: foliar Si spraying) to conduct pot experiments on soil Cd stress. The results showed that spraying Si on the leaves reduced the Cd content in brown rice by 4.79-42.14%. Si application increased net photosynthetic rate (Pn) by 1.77-4.08%, stomatal conductance (Gs) by 5.27-23.43%, transpiration rate (Tr) by 2.99-20.50% and intercellular carbon dioxide (CO2) concentration (Ci) by 6.55-8.84%. Foliar spraying of Si significantly increased the activities of superoxide dismutase (SOD) and peroxidase (POD) in rice leaves by 9.84-14.09% and 4.69-53.09%, respectively, and reduced the content of malondialdehyde (MDA) by 7.83-48.72%. In summary, foliar Si spraying protects the photosynthesis and antioxidant system of rice canopy leaves, and is an effective method to reduce the Cd content in brown rice.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    水稻纹枯病,由根瘤菌引起的(R.solani),对水稻产量和品质构成重大威胁。同源四倍体水稻,通过二倍体水稻的染色体加倍发展,具有增强生物学和产量性状的巨大潜力。然而,它在野外对纹枯病的抵抗力尚不清楚。在这项研究中,从2020年到2021年,在三种环境中评估了35种同源四倍体基因型和相应二倍体的田间抗性。根据水稻五个生长阶段的接种和分析,孕穗期是接种期的最佳选择。我们发现同源四倍体通常表现出比二倍体更低的疾病评分,表明染色体加倍后抗性增强。在35种基因型中,16(45.71%)显示电阻增加,2(5.71%)显示抗性下降,17(48.57%)在不同播期表现出不稳定的抗性。基因型的所有组合,环境和倍性,包括基因型-环境-倍性相互作用,对田间抗性有显著贡献。染色体加倍增加了大多数基因型的纹枯病抗性,但也依赖于基因型与环境的相互作用。为了阐明增强的抗性机制,RNA-seq揭示了同源四倍体招募了更多下调的差异表达基因(DEGs),此外,更多与电阻相关的DEG,与二倍体相比,同源四倍体在接种后24小时下调。泛醌/萜类醌和二萜生物合成途径可能在倍性特异性抗性机制中起关键作用。总之,我们的发现揭示了对同源四倍体水稻纹枯病抗性机制的理解。
    Rice sheath blight, caused by Rhizoctonia solani Kihn (R. solani), poses a significant threat to rice production and quality. Autotetraploid rice, developed through chromosome doubling of diploid rice, holds great potential for enhancing biological and yield traits. However, its resistance to sheath blight in the field has remained unclear. In this study, the field resistance of 35 autotetraploid genotypes and corresponding diploids was evaluated across three environments from 2020 to 2021. The booting stage was optimal for inoculating period based on the inoculation and analysis of R. solani at five rice growth stages. We found autotetraploids generally exhibited lower disease scores than diploids, indicating enhanced resistance after chromosome doubling. Among the 35 genotypes, 16 (45.71%) displayed increased resistance, 2 (5.71%) showed decreased resistance, and 17 (48.57%) displayed unstable resistance in different sowing dates. All combinations of the genotype, environment and ploidy, including the genotype-environment-ploidy interaction, contributed significantly to field resistance. Chromosome doubling increased sheath blight resistance in most genotypes, but was also dependent on the genotype-environment interaction. To elucidate the enhanced resistance mechanism, RNA-seq revealed autotetraploid recruited more down-regulated differentially expressed genes (DEGs), additionally, more resistance-related DEGs, were down-regulated at 24 h post inoculation in autotetraploid versus diploid. The ubiquinone/terpenoid quinone and diterpenoid biosynthesis pathways may play key roles in ploidy-specific resistance mechanisms. In summary, our findings shed light on the understanding of sheath blight resistance mechanisms in autotetraploid rice.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    缓控释肥料由于其在产量和质量方面的有效性以及低环境成本而在水稻种植中受到欢迎。然而,这些肥料调节谷物品质的潜在机制仍未得到充分理解。本研究在为期两年的田间试验中调查了五种肥料管理措施对水稻产量和品质的影响:CK,常规施肥,和四种缓控释肥料的应用(UF,脲甲醛;SCU,硫涂层尿素;PCU,聚合物涂层尿素;BBF,控释散装混合肥料)。在2020年和2021年,与常规施肥相比,UF和SCU组的产量显着下降,伴随着营养质量的下降。此外,PCU组的烹饪和饮食质量较差。然而,BBF组产量(10.8thm-2和11.0thm-2)和籽粒品质均达到CK组水平。与淀粉积累相比,PCU组在籽粒灌浆阶段充足的氮供应导致PCU组中蛋白质和氨基酸积累的能力更大。有趣的是,BBF组的碳氮代谢优于PCU组。BBF组中存在的最佳氮供应适合促进参与糖酵解/三羧酸循环的氨基酸的合成,从而有效协调碳氮代谢。新型缓控释肥的应用,BBF,有利于调节碳氮代谢中的碳流,提高稻米品质。
    Slow-controlled release fertilizers are experiencing a popularity in rice cultivation due to their effectiveness in yield and quality with low environmental costs. However, the underlying mechanism by which these fertilizers regulate grain quality remains inadequately understood. This study investigated the effects of five fertilizer management practices on rice yield and quality in a two-year field experiment: CK, conventional fertilization, and four applications of slow-controlled release fertilizer (UF, urea formaldehyde; SCU, sulfur-coated urea; PCU, polymer-coated urea; BBF, controlled-release bulk blending fertilizer). In 2020 and 2021, the yields of UF and SCU groups showed significant decreases when compared to conventional fertilization, accompanied by a decline in nutritional quality. Additionally, PCU group exhibited poorer cooking and eating qualities. However, BBF group achieved increases in both yield (10.8 t hm-2 and 11.0 t hm-2) and grain quality reaching the level of CK group. The adequate nitrogen supply in PCU group during the grain-filling stage led to a greater capacity for the accumulation of proteins and amino acids in the PCU group compared to starch accumulation. Intriguingly, BBF group showed better carbon-nitrogen metabolism than that of PCU group. The optimal nitrogen supply present in BBF group suitable boosted the synthesis of amino acids involved in the glycolysis/ tricarboxylic acid cycle, thereby effectively coordinating carbon-nitrogen metabolism. The application of the new slow-controlled release fertilizer, BBF, is advantageous in regulating the carbon flow in the carbon-nitrogen metabolism to enhance rice quality.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    大米,占全球人口很大一部分的主食,面临来自各种病原体和害虫的持续威胁,有必要开发有弹性的作物品种。在水稻中部署抗性基因是通过减少农用化学品的施用来管理疾病和减少环境破坏的最佳实践。基因组编辑技术,例如CRISPR-Cas,彻底改变了分子生物学领域,为水稻基因组内的靶向修饰提供精确和有效的工具。本研究探讨了这些工具在水稻抗性基因的新等位基因工程中的应用,旨在增强植物对抗不断变化的威胁的先天能力。通过利用基因组编辑的力量,研究人员可以引入量身定制的遗传修饰,以增强植物的防御机制,而不损害其基本特征。在这项研究中,我们综合了最近在基因组编辑方法适用于水稻的进展,并讨论了围绕转基因作物创造的伦理考虑和监管框架。此外,它探讨了在农业景观中部署编辑水稻品种的潜在挑战和未来前景。总之,这项研究强调了基因组编辑在重塑水稻遗传格局以应对新挑战方面的前景,促进全球粮食安全和可持续农业实践。
    Rice, a staple food for a significant portion of the global population, faces persistent threats from various pathogens and pests, necessitating the development of resilient crop varieties. Deployment of resistance genes in rice is the best practice to manage diseases and reduce environmental damage by reducing the application of agro-chemicals. Genome editing technologies, such as CRISPR-Cas, have revolutionized the field of molecular biology, offering precise and efficient tools for targeted modifications within the rice genome. This study delves into the application of these tools to engineer novel alleles of resistance genes in rice, aiming to enhance the plant\'s innate ability to combat evolving threats. By harnessing the power of genome editing, researchers can introduce tailored genetic modifications that bolster the plant\'s defense mechanisms without compromising its essential characteristics. In this study, we synthesize recent advancements in genome editing methodologies applicable to rice and discuss the ethical considerations and regulatory frameworks surrounding the creation of genetically modified crops. Additionally, it explores potential challenges and future prospects for deploying edited rice varieties in agricultural landscapes. In summary, this study highlights the promise of genome editing in reshaping the genetic landscape of rice to confront emerging challenges, contributing to global food security and sustainable agriculture practices.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

公众号