oligosaccharyltransferase

寡糖糖基转移酶
  • 文章类型: Journal Article
    N-糖基化是真核生物分泌途径中最常见的蛋白质修饰。它涉及在Asn-X-Ser/Thr/Cys的背景下将高甘露糖聚糖连接到Asn残基,称为N-糖基化序列的基序。此过程由STT3A和STT3B介导,寡糖转移酶复合物的催化亚基。STT3A形成与SEC61转位相关的复合物的一部分,并在翻译上共同起作用。空置序列具有通过携带STT3B的复合物进行糖基化的另一个机会。局部序列信息在决定N-糖基化效率中起着重要作用,但是非本地因素也会产生重大影响。例如,尽管具有野生型受体位点,但与人类遗传病相关的某些蛋白质表现出异常的N-糖基化水平。这里,我们研究了蛋白质稳定性对这一过程的影响。为此,我们基于超文件夹GFP产生了一个40个N-聚糖受体家族,我们测量了它们在HEK293细胞和缺乏STT3B或STT3A的两种衍生细胞系中的效率。序列占有率高度依赖于蛋白质的稳定性,随着受体蛋白的热力学稳定性降低而改善。这种效应主要是由于基于STT3B的OST复合物的活性。这些发现可以整合到简单的动力学模型中,该模型将序列中的局部信息与受体蛋白的全局信息区分开。
    N-glycosylation is the most common protein modification in the eukaryotic secretory pathway. It involves the attachment a high mannose glycan to Asn residues in the context of Asn-X-Ser/Thr/Cys, a motif known as N-glycosylation sequon. This process is mediated by STT3A and STT3B, the catalytic subunits of the oligosaccharyltransferase complexes. STT3A forms part of complexes associated with the SEC61 translocon and functions co-translationally. Vacant sequons have another opportunity for glycosylation by complexes carrying STT3B. Local sequence information plays an important role in determining N-glycosylation efficiency, but non-local factors can also have a significant impact. For instance, certain proteins associated with human genetic diseases exhibit abnormal N-glycosylation levels despite having wild-type acceptor sites. Here, we investigated the effect of protein stability on this process. To this end, we generated a family of 40 N-glycan acceptors based on superfolder GFP, and we measured their efficiency in HEK293 cells and in two derived cell lines lacking STT3B or STT3A. Sequon occupancy was highly dependent on protein stability, improving as the thermodynamic stability of the acceptor proteins decreases. This effect is mainly due to the activity of the STT3B-based OST complex. These findings can be integrated into a simple kinetic model that distinguishes local information within sequons from global information of the acceptor proteins.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    核因子κB(NF-κB)在多种疾病中起作用。许多炎症信号,如循环脂多糖(LPS),通过特异性受体激活NF-κB。使用表达NF-κB驱动的自杀基因的LPS处理细胞的全基因组CRISPR-Cas9筛选,我们发现LPS受体Toll样受体4(TLR4)特异性依赖于寡糖转移酶复合物OST-A进行N-糖基化和细胞表面定位。工具化合物NGI-1在体内抑制OST复合物,但是潜在的分子机制仍然未知。我们对STT3A的NGI-1抗性变体进行了CRISPR基础编辑器筛选,OST-A的催化亚基这些变种,结合冷冻电子显微镜研究,揭示NGI-1结合STT3A的催化位点,它捕获供体底物dolichyl-PP-GlcNAc2-Man9-Glc3的分子,表明非竞争性抑制机制。我们的结果为开发STT3A特异性抑制剂提供了理论基础和第一步,并说明了同时进行的碱基编辑器和结构研究定义药物作用机制的能力。
    Nuclear factor κB (NF-κB) plays roles in various diseases. Many inflammatory signals, such as circulating lipopolysaccharides (LPSs), activate NF-κB via specific receptors. Using whole-genome CRISPR-Cas9 screens of LPS-treated cells that express an NF-κB-driven suicide gene, we discovered that the LPS receptor Toll-like receptor 4 (TLR4) is specifically dependent on the oligosaccharyltransferase complex OST-A for N-glycosylation and cell-surface localization. The tool compound NGI-1 inhibits OST complexes in vivo, but the underlying molecular mechanism remained unknown. We did a CRISPR base-editor screen for NGI-1-resistant variants of STT3A, the catalytic subunit of OST-A. These variants, in conjunction with cryoelectron microscopy studies, revealed that NGI-1 binds the catalytic site of STT3A, where it traps a molecule of the donor substrate dolichyl-PP-GlcNAc2-Man9-Glc3, suggesting an uncompetitive inhibition mechanism. Our results provide a rationale for and an initial step toward the development of STT3A-specific inhibitors and illustrate the power of contemporaneous base-editor and structural studies to define drug mechanism of action.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    无细胞,化学酶平台是产生具有确定和均质糖型的糖缀合物的新兴技术。重组寡糖转移酶可以应用于糖基化\“空,\"即,aglycosylted,肽和蛋白质。虽然细菌寡糖转移酶已被广泛研究,直到最近,重组真核单亚基寡糖基转移酶已成功用于体外N-糖基化肽。然而,尚未确定其在合成全长糖蛋白和利用甘露糖型聚糖以外的聚糖进行转移方面的适用性。这里,我们首次展示了使用合成脂质载体作为体外N-糖基化反应底物的杂交型和复合型聚糖的合成。为此,跨膜缺失的人β-1,2N-乙酰葡糖胺转移酶I和II(MGAT1ΔTM和MGAT2ΔTM)和β-1,4-半乳糖基转移酶(GalTΔTM)已在大肠杆菌中表达,并用于扩展现有的多酶级联。杂合和半乳糖化的复合结构均通过来自布鲁氏锥虫的重组寡糖转移酶STT3A转移到肽的N-糖基化共有序列(10个氨基酸:G-S-D-A-N-Y-T-Y-T-Q)。
    Cell-free, chemoenzymatic platforms are emerging technologies towards generating glycoconjugates with defined and homogeneous glycoforms. Recombinant oligosaccharyltransferases can be applied to glycosylate \"empty,\" i.e., aglycosyalted, peptides and proteins. While bacterial oligosaccharlytransferases have been extensively investigated, only recently a recombinant eukaryotic single-subunit oligosaccharyltransferase has been successfully used to in vitro N-glycosylate peptides. However, its applicability towards synthesizing full-length glycoproteins and utilizing glycans beyond mannose-type glycans for the transfer have not be determined. Here, we show for the first time the synthesis of hybrid- and complex-type glycans using synthetic lipid carriers as substrates for in vitro N-glycosylation reactions. For this purpose, transmembrane-deleted human β-1,2 N-acetylglucosamintransferase I and II (MGAT1ΔTM and MGAT2ΔTM) and β-1,4-galactosyltransferase (GalTΔTM) have been expressed in Escherichia coli and used to extend an existing multi-enzyme cascade. Both hybrid and agalactosylated complex structures were transferred to the N-glycosylation consensus sequence of peptides (10 amino acids: G-S-D-A-N-Y-T-Y-T-Q) by the recombinant oligosaccharyltransferase STT3A from Trypanosoma brucei.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Review
    N-连接蛋白糖基化是存在于生命的所有结构域中的翻译后修饰。它涉及两个连续的步骤:(1)生物合成脂质连接的寡糖(LLO),和(2)聚糖从LLO转移到分泌蛋白中的天冬酰胺残基,其由整合膜酶寡糖转移酶(OST)催化。在过去的十年里,N-糖基化机制的结构和功能研究增加了我们对该途径的机制理解。参与LLO延伸的细菌和真核糖基转移酶的结构提供了对LLO生物合成机制的了解。而OST酶的结构揭示了测序识别和催化的分子基础。在这次审查中,我们将讨论使用的方法和从这些研究中获得的见解,特别强调底物类似物的设计和制备。
    N-linked protein glycosylation is a post-translational modification that exists in all domains of life. It involves two consecutive steps: (i) biosynthesis of a lipid-linked oligosaccharide (LLO), and (ii) glycan transfer from the LLO to asparagine residues in secretory proteins, which is catalyzed by the integral membrane enzyme oligosaccharyltransferase (OST). In the last decade, structural and functional studies of the N-glycosylation machinery have increased our mechanistic understanding of the pathway. The structures of bacterial and eukaryotic glycosyltransferases involved in LLO elongation provided an insight into the mechanism of LLO biosynthesis, whereas structures of OST enzymes revealed the molecular basis of sequon recognition and catalysis. In this review, we will discuss approaches used and insight obtained from these studies with a special emphasis on the design and preparation of substrate analogs.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    天冬酰胺(Asn,N)-连接的糖基化是在内质网(ER)中新生多肽的NXT/S基序上发生的保守过程和必需的翻译后修饰。卵菌很少记录N-糖基化的机制和参与该过程的关键催化酶的生物学功能。在这项研究中,N-糖基化抑制剂衣霉素(TM)阻碍了菌丝体的生长,孢子囊释放,和辣椒疫霉的游动孢子生产,表明N-糖基化对卵菌的生长发育至关重要。在参与N-糖基化的关键催化酶中,PcSTT3B基因的特征在于其在辣椒假单胞菌中的功能。作为寡糖转移酶(OST)复合物的核心亚基,星形孢菌素和温度敏感3B(STT3B)亚基对OST的催化活性至关重要。PcSTT3B基因具有催化活性,在辣椒中高度保守。通过使用CRISPR/Cas9介导的基因替换系统来删除PcSTT3B基因,转化体损害菌丝生长,孢子囊释放,动物园孢子生产,和毒力。PcSTT3B缺失的转化体对ER胁迫诱导剂TM更敏感,并且在菌丝体中显示出低糖蛋白含量,表明PcSTT3B与ER应激反应和N-糖基化有关。因此,PcSTT3B参与了开发,致病性,和辣椒假单胞菌的N-糖基化。
    Asparagine (Asn, N)-linked glycosylation is a conserved process and an essential post-translational modification that occurs on the NXT/S motif of the nascent polypeptides in endoplasmic reticulum (ER). The mechanism of N-glycosylation and biological functions of key catalytic enzymes involved in this process are rarely documented for oomycetes. In this study, an N-glycosylation inhibitor tunicamycin (TM) hampered the mycelial growth, sporangial release, and zoospore production of Phytophthora capsici, indicating that N-glycosylation was crucial for oomycete growth development. Among the key catalytic enzymes involved in N-glycosylation, the PcSTT3B gene was characterized by its functions in P. capsici. As a core subunit of the oligosaccharyltransferase (OST) complex, the staurosporine and temperature sensive 3B (STT3B) subunit were critical for the catalytic activity of OST. The PcSTT3B gene has catalytic activity and is highly conservative in P. capsici. By using a CRISPR/Cas9-mediated gene replacement system to delete the PcSTT3B gene, the transformants impaired mycelial growth, sporangial release, zoospore production, and virulence. The PcSTT3B-deleted transformants were more sensitive to an ER stress inducer TM and display low glycoprotein content in the mycelia, suggesting that PcSTT3B was associated with ER stress responses and N-glycosylation. Therefore, PcSTT3B was involved in the development, pathogenicity, and N-glycosylation of P. capsici.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    N-糖基化是真核生物中分泌蛋白的常见翻译后修饰。该修饰靶向共有序列内的天冬酰胺残基,N-X-S/T.虽然该序列是糖基化所必需的,通过寡糖基转移酶A或B(OST-A或OST-B)的高甘露糖聚糖的初始转移可能导致在给定位点的不完全占据。决定转移程度的因素还没有得到很好的理解,了解它们可以深入了解这些重要酶的功能。这里,我们使用质谱(MS)同时测量重组糖蛋白N端IgV结构域上三个N糖基化位点的相对占用率,HCEACAM1.我们证明了添加主要是通过OST-B酶,并提出了OST-BN-糖基化的动力学模型。将动力学模型拟合到MS数据在大多数位点处产生不同的聚糖添加速率,并且表明聚糖添加的初始顺序在很大程度上是随机的。该模型还表明,一个位点的糖基化会影响其他位点后续修饰的效率,并且在中心或N-末端位点的糖基化导致死端产物,其很少导致所有三个位点的完全糖基化。只有一条逐渐糖基化的途径,一种是由C端位点的糖基化引发的,可以有效地导致所有三个站点的完全占用。因此,hCEACAM1结构域提供了一个有效的模型系统来研究OST-B对糖基化序列的位点特异性识别,并表明翻译后糖基化的顺序和效率受到相邻受体位点之间的空间串扰的影响。
    N-glycosylation is a common posttranslational modification of secreted proteins in eukaryotes. This modification targets asparagine residues within the consensus sequence, N-X-S/T. While this sequence is required for glycosylation, the initial transfer of a high-mannose glycan by oligosaccharyl transferases A or B (OST-A or OST-B) can lead to incomplete occupancy at a given site. Factors that determine the extent of transfer are not well understood, and understanding them may provide insight into the function of these important enzymes. Here, we use mass spectrometry (MS) to simultaneously measure relative occupancies for three N-glycosylation sites on the N-terminal IgV domain of the recombinant glycoprotein, hCEACAM1. We demonstrate that addition is primarily by the OST-B enzyme and propose a kinetic model of OST-B N-glycosylation. Fitting the kinetic model to the MS data yields distinct rates for glycan addition at most sites and suggests a largely stochastic initial order of glycan addition. The model also suggests that glycosylation at one site influences the efficiency of subsequent modifications at the other sites, and glycosylation at the central or N-terminal site leads to dead-end products that seldom lead to full glycosylation of all three sites. Only one path of progressive glycosylation, one initiated by glycosylation at the C-terminal site, can efficiently lead to full occupancy for all three sites. Thus, the hCEACAM1 domain provides an effective model system to study site-specific recognition of glycosylation sequons by OST-B and suggests that the order and efficiency of posttranslational glycosylation is influenced by steric cross-talk between adjoining acceptor sites.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    膜蛋白的结构研究需要高质量的样品。靶蛋白不仅应该是纯的和均质的,而且应该是活性的并且允许捕获功能相关的状态。在这里,我们提出了人类ABC转运蛋白和寡糖转移酶(OST)复合物的表达和纯化的优化方法,这些复合物可用于使用单粒子低温电子显微镜(cryo-EM)进行高分辨率结构测定。该方案基于能够实现四环素诱导的靶蛋白表达的稳定细胞系的产生。对于多药物出口国ABCB1,我们描述了在药物存在下重建纳米圆盘和评估ATPase活性的方案。对于人类OST来说,我们描述了纯化OST-A和OST-B复合物的策略,包括使用体外糖基化测定法评估其完整性和活性的技术。这些方案可适用于生产其它人ABC转运蛋白和多聚膜蛋白复合物。
    Structural studies of membrane proteins require high-quality samples. The target proteins should not only be pure and homogeneous but should also be active and allow the capture of a functionally relevant state. Here we present optimized methods for the expression and purification of human ABC transporters and oligosaccharyltransferase (OST) complexes that can be used for high-resolution structure determination using single-particle cryo-electron microscopy (cryo-EM). The protocols are based on the generation of stable cell lines that enable tetracycline-inducible expression of the target proteins. For the multidrug exporter ABCB1, we describe a protocol for reconstitution into nanodiscs and evaluation of the ATPase activity in the presence of drugs. For human OST, we describe a strategy for the purification of OST-A and OST-B complexes, including techniques to evaluate their integrity and activity using in vitro glycosylation assays. These protocols can be adapted for the production of other human ABC transporters and multimeric membrane protein complexes.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    背景:布鲁氏锥虫是一种原生动物寄生虫,是人类和动物非洲锥虫病的病原体。生物体在其哺乳动物宿主和采采蝇载体之间循环。寄主居住的血液形式的寄生虫被单层的变体表面糖蛋白(VSG)覆盖,使其能够逃脱先天和适应性免疫系统。在该外壳内存在较低丰度的表面糖蛋白,其充当受体和/或营养转运蛋白。布鲁氏锥虫表面蛋白质组的糖基化是逃避免疫反应所必需的,是由三个寡糖转移酶基因介导的;其中两个,TbSTT3A和TbSTT3B,在寄生虫的血流形式中表达。方法:我们处理了实验室的最新数据集,以可视化布鲁氏锥虫蛋白质组的推定糖基化位点。我们为TbSTT3A和TbSTT3B携带的糖基化的预测提供了可视化,我们通过预测糖基磷脂酰肌醇锚定位点来增强可视化,布鲁氏锥虫蛋白质组的结构域和拓扑结构。结论:我们创建了一个Web服务来探索布鲁氏锥虫寡糖转移酶底物的糖基化位点,使用我们实验室最近发表的数据。我们还开发了一个机器学习算法,作为一个Web服务,在我们最近的出版物中描述过,以区分TbSTT3A和TbSTT3B底物。
    Background: Trypanosoma brucei is a protozoan parasite and the etiological agent of human and animal African trypanosomiasis. The organism cycles between its mammalian host and tsetse vector. The host-dwelling bloodstream form of the parasite is covered with a monolayer of variant surface glycoprotein (VSG) that enables it to escape both the innate and adaptive immune systems. Within this coat reside lower-abundance surface glycoproteins that function as receptors and/or nutrient transporters. The glycosylation of the Trypanosoma brucei surface proteome is essential to evade the immune response and is mediated by three oligosaccharyltransferase genes; two of which, TbSTT3A and TbSTT3B, are expressed in the bloodstream form of the parasite. Methods: We processed a recent dataset of our laboratory to visualise putative glycosylation sites of the Trypanosoma brucei proteome. We provided a visualisation for the predictions of glycosylation carried by TbSTT3A and TbSTT3B, and we augmented the visualisation with predictions for Glycosylphosphatidylinositol anchoring sites, domains and topology of the Trypanosoma brucei proteome. Conclusions: We created a web service to explore the glycosylation sites of the Trypanosoma brucei oligosaccharyltransferases substrates, using data described in a recent publication of our laboratory. We also made a machine learning algorithm available as a web service, described in our recent publication, to distinguish between TbSTT3A and TbSTT3B substrates.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    近年来,已经出现了无细胞合成糖生物学技术,该技术能够在细胞范围外产生和重塑糖蛋白。然而,这些系统中的许多将多个合成步骤组合到一个锅中,其中可能存在竞争反应和副产物,这最终导致所需产物的低收率。在这项工作中,我们描述了一个集成无细胞蛋白质合成的微流控平台,糖基化,和在单独的隔室中纯化模型糖蛋白,其中每个步骤可以单独优化。微流体提供的优势,如反应区划分,可调的停留时间,束缚酶重复使用的能力,以及持续制造的潜力。此外,它为糖基化反应的时空控制提供了机会,这是用现有的基于细胞的和无细胞的糖基化系统难以实现的。在这项工作中,我们展示了一种基于流动的糖蛋白合成系统,该系统可促进无细胞蛋白质合成的增强,用固定化寡糖转移酶进行有效的蛋白质糖基化,和从无细胞裂解物中富集蛋白质产物。总的来说,这项工作代表了一种首创的糖基化芯片原型,可以用作蛋白质糖基化过程的机械解剖的实验室工具以及小批量的生物制造平台,分散式糖蛋白生产。
    In recent years, cell-free synthetic glycobiology technologies have emerged that enable production and remodeling of glycoproteins outside the confines of the cell. However, many of these systems combine multiple synthesis steps into one pot where there can be competing reactions and side products that ultimately lead to low yield of the desired product. In this work, we describe a microfluidic platform that integrates cell-free protein synthesis, glycosylation, and purification of a model glycoprotein in separate compartments where each step can be individually optimized. Microfluidics offer advantages such as reaction compartmentalization, tunable residence time, the ability to tether enzymes for reuse, and the potential for continuous manufacturing. Moreover, it affords an opportunity for spatiotemporal control of glycosylation reactions that is difficult to achieve with existing cell-based and cell-free glycosylation systems. In this work, we demonstrate a flow-based glycoprotein synthesis system that promotes enhanced cell-free protein synthesis, efficient protein glycosylation with an immobilized oligosaccharyltransferase, and enrichment of the protein product from cell-free lysate. Overall, this work represents a first-in-kind glycosylation-on-a-chip prototype that could find use as a laboratory tool for mechanistic dissection of the protein glycosylation process as well as a biomanufacturing platform for small batch, decentralized glycoprotein production.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    寡糖糖基转移酶(OST)催化N-连接蛋白糖基化的中心步骤,预组装的寡糖从其脂质载体转移到分泌蛋白的天冬酰胺残基上。来自酿酒酵母的原型异八聚体OST复合物以两种同工型存在,其中包含Ost3p或Ost6p,两个非催化亚基。这两种OST复合物在体内具有不同的蛋白质底物特异性。然而,它们的详细生化机制和不同特异性的基础尚不清楚。从仅表达一种同种型的基因工程菌株中纯化两种OST复合物。使用短肽和不同合成脂质连接寡糖(LLO)底物的定量体外糖基化测定表征动力学性质和底物特异性。我们发现,接近糖基化序列的肽序列会影响肽的亲和力和转换率。脂质部分的长度影响LLO亲和力,而脂质双键立体化学对LLO周转率的影响更大。两种OST复合物对肽和LLO底物两者具有相似的亲和力,但显示出显著不同的转换率。这些数据为Ost3p和Ost6p亚基的功能分析提供了基础。
    Oligosaccharyltransferase (OST) catalyzes the central step in N-linked protein glycosylation, the transfer of a preassembled oligosaccharide from its lipid carrier onto asparagine residues of secretory proteins. The prototypic hetero-octameric OST complex from the yeast Saccharomyces cerevisiae exists as two isoforms that contain either Ost3p or Ost6p, both noncatalytic subunits. These two OST complexes have different protein substrate specificities in vivo. However, their detailed biochemical mechanisms and the basis for their different specificities are not clear. The two OST complexes were purified from genetically engineered strains expressing only one isoform. The kinetic properties and substrate specificities were characterized using a quantitative in vitro glycosylation assay with short peptides and different synthetic lipid-linked oligosaccharide (LLO) substrates. We found that the peptide sequence close to the glycosylation sequon affected peptide affinity and turnover rate. The length of the lipid moiety affected LLO affinity, while the lipid double-bond stereochemistry had a greater influence on LLO turnover rates. The two OST complexes had similar affinities for both the peptide and LLO substrates but showed significantly different turnover rates. These data provide the basis for a functional analysis of the Ost3p and Ost6p subunits.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

       PDF(Pubmed)

公众号