neural stem cells

神经干细胞
  • 文章类型: Journal Article
    ADP核糖基化因子样GTP酶2(Arl2)对于控制各种生物体中的线粒体融合和微管组装至关重要。Arl2通过微管生长调节果蝇中神经干细胞的不对称分裂。然而,哺乳动物Arl2在皮质发育过程中的功能尚不清楚。这里,我们证明小鼠Arl2通过调节微管生长在皮质发生中起新的作用,但不是线粒体的功能。Arl2敲低(KD)导致神经祖细胞(NPC)增殖受损和神经元迁移。小鼠NPC中的Arl2KD显着降低了中心体微管的生长和中心体蛋白Cdk5rap2和γ-微管蛋白的离域。此外,Arl2通过使用AlphaFold多聚体的模拟预测与Cdk5rap2物理关联,通过共免疫沉淀和邻近连接测定进行了验证。值得注意的是,Cdk5rap2过表达显着挽救了Arl2KD引起的神经发生缺陷。因此,Arl2通过微管生长通过中心体蛋白Cdk5rap2在小鼠皮质发育中起重要作用。
    ADP ribosylation factor-like GTPase 2 (Arl2) is crucial for controlling mitochondrial fusion and microtubule assembly in various organisms. Arl2 regulates the asymmetric division of neural stem cells in Drosophila via microtubule growth. However, the function of mammalian Arl2 during cortical development was unknown. Here, we demonstrate that mouse Arl2 plays a new role in corticogenesis via regulating microtubule growth, but not mitochondria functions. Arl2 knockdown (KD) leads to impaired proliferation of neural progenitor cells (NPCs) and neuronal migration. Arl2 KD in mouse NPCs significantly diminishes centrosomal microtubule growth and delocalization of centrosomal proteins Cdk5rap2 and γ-tubulin. Moreover, Arl2 physically associates with Cdk5rap2 by in silico prediction using AlphaFold multimer, which was validated by co-immunoprecipitation and proximity ligation assay. Remarkably, Cdk5rap2 overexpression significantly rescues the neurogenesis defects caused by Arl2 KD. Therefore, Arl2 plays an important role in mouse cortical development through microtubule growth via the centrosomal protein Cdk5rap2.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    影响年轻人的最普遍的罕见遗传疾病是脊髓性肌萎缩症(SMA),这是由端粒基因存活运动神经元(SMN)1的功能丧失突变引起的。SMA病理生理学的高度异质性取决于SMN2的拷贝数,SMN2是一种可以转录相同蛋白质的独立着丝粒基因,尽管它以较慢的速度表示。SMA影响运动神经元。然而,根据病情的严重程度,各种不同的组织和器官也可能受到影响。新的药物治疗,比如Spinraza,Onasemnogeneabeparvovec-xioi,和Evrysdi,被认为是疾病修饰剂,因为它们的使用可以改变患者的表型。由于已经报道了受SMA影响的细胞中的氧化应激,我们研究了抗氧化疗法对具有分化为运动神经元潜能的神经干细胞(NSC)的影响.抗氧化剂可以通过各种途径发挥作用;例如,其中一些通过核因子(红系衍生的2)-样2(NRF2)发挥功能。我们发现姜黄素能够通过激活NRF2的核易位在健康和受SMA影响的NSC中诱导积极作用,这可能使用与通过抗氧化剂反应元件和抗氧化剂分子的产生的经典氧化还原调节不同的机制。
    The most prevalent rare genetic disease affecting young individuals is spinal muscular atrophy (SMA), which is caused by a loss-of-function mutation in the telomeric gene survival motor neuron (SMN) 1. The high heterogeneity of the SMA pathophysiology is determined by the number of copies of SMN2, a separate centromeric gene that can transcribe for the same protein, although it is expressed at a slower rate. SMA affects motor neurons. However, a variety of different tissues and organs may also be affected depending on the severity of the condition. Novel pharmacological treatments, such as Spinraza, Onasemnogene abeparvovec-xioi, and Evrysdi, are considered to be disease modifiers because their use can change the phenotypes of the patients. Since oxidative stress has been reported in SMA-affected cells, we studied the impact of antioxidant therapy on neural stem cells (NSCs) that have the potential to differentiate into motor neurons. Antioxidants can act through various pathways; for example, some of them exert their function through nuclear factor (erythroid-derived 2)-like 2 (NRF2). We found that curcumin is able to induce positive effects in healthy and SMA-affected NSCs by activating the nuclear translocation of NRF2, which may use a different mechanism than canonical redox regulation through the antioxidant-response elements and the production of antioxidant molecules.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    原理:脑室下区(SVZ)的成人神经发生对于维持神经稳态至关重要,它的失调会导致神经系统疾病的失语症和组织愈合延迟,如帕金森病(PD)。尽管在SVZ神经发生中发现了复杂的调节网络,动态维持神经干/祖细胞(NSPCs)响应生理和病理刺激的分子机制仍未完全阐明。方法:我们建立了一个RNA结合基序蛋白24(Rbm24)敲除模型,以研究其对SVZ中成人神经发生的影响。采用免疫荧光,免疫印迹,电生理学,RNA测序,和体外实验。进一步的研究利用PD小鼠模型,连同遗传和药理操作,阐明Rbm24参与PD病理。结果:Rbm24,细胞稳态的多方面转录后调节因子,从发育到衰老在SVZ中表现出广泛的表达。Rbm24的缺失显着损害成年SVZ的NSPC增殖,最终导致嗅球神经发生塌陷。值得注意的是,Rbm24在维持成年NSPCs中Notch1mRNA的稳定性中起着特定的作用。Rbm24/Notch1信号轴在PD小鼠的SVZ中显著下调。值得注意的是,Rbm24的过表达拯救了PD小鼠成年神经发生和嗅觉功能障碍的破坏,这些影响受到DAPT的阻碍,Notch1的有效抑制剂。结论:我们的发现强调了Rbm24/Notch1信号轴在生理和病理情况下调节成人SVZ神经发生的关键作用。这为NSPC稳态的动态调节提供了有价值的见解,并为PD和相关神经系统疾病提供了潜在的针对性干预措施。
    Rationale: Adult neurogenesis in the subventricular zone (SVZ) is essential for maintaining neural homeostasis, and its dysregulation contributes to anosmia and delayed tissue healing in neurological disorders, such as Parkinson\'s disease (PD). Despite intricate regulatory networks identified in SVZ neurogenesis, the molecular mechanisms dynamically maintaining neural stem/progenitor cells (NSPCs) in response to physiological and pathological stimuli remain incompletely elucidated. Methods: We generated an RNA binding motif protein 24 (Rbm24) knockout model to investigate its impact on adult neurogenesis in the SVZ, employing immunofluorescence, immunoblot, electrophysiology, RNA-sequencing, and in vitro experiments. Further investigations utilized a PD mouse model, along with genetic and pharmacological manipulations, to elucidate Rbm24 involvement in PD pathology. Results: Rbm24, a multifaceted post-transcriptional regulator of cellular homeostasis, exhibited broad expression in the SVZ from development to aging. Deletion of Rbm24 significantly impaired NSPC proliferation in the adult SVZ, ultimately resulting in collapsed neurogenesis in the olfactory bulb. Notably, Rbm24 played a specific role in maintaining Notch1 mRNA stability in adult NSPCs. The Rbm24/Notch1 signaling axis was significantly downregulated in the SVZ of PD mice. Remarkably, overexpression of Rbm24 rescued disruption of adult neurogenesis and olfactory dysfunction in PD mice, and these effects were hindered by DAPT, a potent inhibitor of Notch1. Conclusions: Our findings highlight the critical role of the Rbm24/Notch1 signaling axis in regulating adult SVZ neurogenesis under physiological and pathological circumstances. This provides valuable insights into the dynamic regulation of NSPC homeostasis and offers a potential targeted intervention for PD and related neurological disorders.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    胶质母细胞瘤(GBM)是最普遍和侵袭性的恶性原发性脑肿瘤。侧脑室(LVs)近端GBM更具侵袭性,可能是因为脑室下区域接触。尽管如此,GBM和神经干/祖细胞(NSC/NPCs)之间的串扰还不是很清楚。使用细胞特异性蛋白质组学,我们显示LV近端GBM通过诱导衰老阻止神经干细胞的神经元成熟。此外,GBM脑肿瘤起始细胞(BTIC)在与NPC相互作用时增加组织蛋白酶B(CTSB)的表达。慢病毒敲低和重组蛋白实验表明,细胞固有和可溶性CTSB均可促进BTIC中与恶性肿瘤相关的表型。可溶性CTSB阻止NPCs中的神经元成熟,同时促进衰老,提供LV-肿瘤接近和神经发生破坏之间的联系。最后,我们显示患者左心室近端CTSB上调,显示了这种串扰在人类GBM生物学中的相关性。这些结果证明了蛋白质组学分析在肿瘤微环境研究中的价值,并为GBM的新治疗策略提供了方向。
    Glioblastoma (GBM) is the most prevalent and aggressive malignant primary brain tumor. GBM proximal to the lateral ventricles (LVs) is more aggressive, potentially because of subventricular zone contact. Despite this, cross-talk between GBM and neural stem/progenitor cells (NSC/NPCs) is not well understood. Using cell-specific proteomics, we show that LV-proximal GBM prevents neuronal maturation of NSCs through induction of senescence. In addition, GBM brain tumor-initiating cells (BTICs) increase expression of cathepsin B (CTSB) upon interaction with NPCs. Lentiviral knockdown and recombinant protein experiments reveal that both cell-intrinsic and soluble CTSB promote malignancy-associated phenotypes in BTICs. Soluble CTSB stalls neuronal maturation in NPCs while promoting senescence, providing a link between LV-tumor proximity and neurogenesis disruption. Last, we show LV-proximal CTSB up-regulation in patients, showing the relevance of this cross-talk in human GBM biology. These results demonstrate the value of proteomic analysis in tumor microenvironment research and provide direction for new therapeutic strategies in GBM.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    背景:神经再生不足和抑制性局部微环境是脊髓损伤(SCI)修复的主要障碍。内源性神经干细胞(NSC)的活化和分化命运调节是最有前途的修复方法之一。二甲双胍的抗氧化作用已被广泛研究,抗炎,抗衰老,和自噬调节特性在中枢神经系统疾病。然而,二甲双胍对内源性神经干细胞的影响尚待阐明。
    方法:用CCK-8法评价神经干细胞的增殖和分化能力,EdU/Ki67染色和免疫荧光染色。采用WesternBlot和免疫荧光染色检测NSC中铁凋亡相关关键蛋白表达的变化。活性氧的水平,使用相应的测定试剂盒测量谷胱甘肽和组织铁。用透射电镜和JC-1荧光探针观察线粒体形态和膜电位的变化。通过BBB评分评估大鼠SCI后的运动功能恢复,LSS得分,CatWalk步态分析,和电生理测试。使用Western印迹检查AMPK途径的表达。
    结果:二甲双胍在体外和体内均能促进神经干细胞的增殖和神经元分化。此外,在体外建立了使用erastin处理的神经干细胞的铁凋亡模型,二甲双胍治疗可以逆转关键的铁凋亡相关蛋白表达的变化,增加谷胱甘肽合成,减少活性氧的产生,改善线粒体膜电位和形态。此外,服用二甲双胍可改善SCI后大鼠的运动功能恢复和组织学结局。值得注意的是,加入化合物C后,二甲双胍的所有上述有益作用均完全消除,AMP激活蛋白激酶(AMPK)的特异性抑制剂。
    结论:二甲双胍,由典型的AMPK依赖性调节驱动,促进内源性神经干细胞的增殖和神经元分化,同时抑制铁凋亡,从而促进SCI后运动功能的恢复。我们的研究进一步阐明了二甲双胍在SCI中的保护机制,为其作为SCI治疗剂的候选资格提供了新的机制见解。
    BACKGROUND: Inadequate nerve regeneration and an inhibitory local microenvironment are major obstacles to the repair of spinal cord injury (SCI). The activation and differentiation fate regulation of endogenous neural stem cells (NSCs) represent one of the most promising repair approaches. Metformin has been extensively studied for its antioxidative, anti-inflammatory, anti-aging, and autophagy-regulating properties in central nervous system diseases. However, the effects of metformin on endogenous NSCs remains to be elucidated.
    METHODS: The proliferation and differentiation abilities of NSCs were evaluated using CCK-8 assay, EdU/Ki67 staining and immunofluorescence staining. Changes in the expression of key proteins related to ferroptosis in NSCs were detected using Western Blot and immunofluorescence staining. The levels of reactive oxygen species, glutathione and tissue iron were measured using corresponding assay kits. Changes in mitochondrial morphology and membrane potential were observed using transmission electron microscopy and JC-1 fluorescence probe. Locomotor function recovery after SCI in rats was assessed through BBB score, LSS score, CatWalk gait analysis, and electrophysiological testing. The expression of the AMPK pathway was examined using Western Blot.
    RESULTS: Metformin promoted the proliferation and neuronal differentiation of NSCs both in vitro and in vivo. Furthermore, a ferroptosis model of NSCs using erastin treatment was established in vitro, and metformin treatment could reverse the changes in the expression of key ferroptosis-related proteins, increase glutathione synthesis, reduce reactive oxygen species production and improve mitochondrial membrane potential and morphology. Moreover, metformin administration improved locomotor function recovery and histological outcomes following SCI in rats. Notably, all the above beneficial effects of metformin were completely abolished upon addition of compound C, a specific inhibitor of AMP-activated protein kinase (AMPK).
    CONCLUSIONS: Metformin, driven by canonical AMPK-dependent regulation, promotes proliferation and neuronal differentiation of endogenous NSCs while inhibiting ferroptosis, thereby facilitating recovery of locomotor function following SCI. Our study further elucidates the protective mechanism of metformin in SCI, providing new mechanistic insights for its candidacy as a therapeutic agent for SCI.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    虽然细胞外基质(ECM)应力松弛越来越受到人们的重视,以调节干细胞的命运承诺和其他行为,与传统的2D细胞培养相比,细胞如何处理组织样三维(3D)几何形状中的应力松弛线索仍然未知。这里,我们开发了一种寡核苷酸交联的基于透明质酸的ECM平台,具有可调的应力松弛特性,可用于2D或3D。引人注目的是,应力松弛有利于3D中的神经干细胞(NSC)神经发生,但在2D中抑制它。RNA测序和功能研究暗示膜相关蛋白血影蛋白是应力松弛线索的关键3D特异性换能器。限制压力会促使血影蛋白募集到F-肌动蛋白细胞骨架,在那里它机械地加强皮质并增强机械传导信号。血影蛋白表达的增加也伴随着转录因子EGR1的表达增加,我们先前在3D中显示了介导NSC刚度依赖性谱系的承诺。我们的工作强调光谱是3D应力松弛线索的重要分子传感器和换能器。
    While extracellular matrix (ECM) stress relaxation is increasingly appreciated to regulate stem cell fate commitment and other behaviors, much remains unknown about how cells process stress-relaxation cues in tissue-like three-dimensional (3D) geometries versus traditional 2D cell culture. Here, we develop an oligonucleotide-crosslinked hyaluronic acid-based ECM platform with tunable stress relaxation properties capable of use in either 2D or 3D. Strikingly, stress relaxation favors neural stem cell (NSC) neurogenesis in 3D but suppresses it in 2D. RNA sequencing and functional studies implicate the membrane-associated protein spectrin as a key 3D-specific transducer of stress-relaxation cues. Confining stress drives spectrin\'s recruitment to the F-actin cytoskeleton, where it mechanically reinforces the cortex and potentiates mechanotransductive signaling. Increased spectrin expression is also accompanied by increased expression of the transcription factor EGR1, which we previously showed mediates NSC stiffness-dependent lineage commitment in 3D. Our work highlights spectrin as an important molecular sensor and transducer of 3D stress-relaxation cues.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    海马齿状回中的成体神经干细胞(NSCs)在整个生命中不断增殖并产生新的神经元。尽管细胞器的各种功能与成人神经发生的调节密切相关。内质网(ER)相关分子在这一过程中的作用在很大程度上仍未被研究.在这里,我们展示了Derlin-1,一种与ER相关的降解成分,通过与其作为ER质量控制器的既定作用不同的机制,时空维持成年海马神经发生。小鼠中枢神经系统中的Derlin-1缺乏导致新生神经元的异位定位,并损害NSC从活跃状态到静止状态的过渡,导致海马神经干细胞早期耗尽。因此,Derlin-1缺陷型小鼠表现出癫痫发作易感性和认知功能障碍增加的表型。Stat5b表达减少是Derlin-1缺陷型NSC中成人神经发生缺陷的原因。抑制组蛋白脱乙酰酶活性可有效诱导Stat5b表达并恢复异常的成人神经发生,导致Derlin-1缺陷小鼠癫痫发作易感性和认知功能障碍的改善。我们的发现表明,Derlin-1-Stat5b轴对于成年海马神经发生的稳态是必不可少的。
    Adult neural stem cells (NSCs) in the hippocampal dentate gyrus continuously proliferate and generate new neurons throughout life. Although various functions of organelles are closely related to the regulation of adult neurogenesis, the role of endoplasmic reticulum (ER)-related molecules in this process remains largely unexplored. Here we show that Derlin-1, an ER-associated degradation component, spatiotemporally maintains adult hippocampal neurogenesis through a mechanism distinct from its established role as an ER quality controller. Derlin-1 deficiency in the mouse central nervous system leads to the ectopic localization of newborn neurons and impairs NSC transition from active to quiescent states, resulting in early depletion of hippocampal NSCs. As a result, Derlin-1-deficient mice exhibit phenotypes of increased seizure susceptibility and cognitive dysfunction. Reduced Stat5b expression is responsible for adult neurogenesis defects in Derlin-1-deficient NSCs. Inhibition of histone deacetylase activity effectively induces Stat5b expression and restores abnormal adult neurogenesis, resulting in improved seizure susceptibility and cognitive dysfunction in Derlin-1-deficient mice. Our findings indicate that the Derlin-1-Stat5b axis is indispensable for the homeostasis of adult hippocampal neurogenesis.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    成人神经发生涉及从神经祖细胞产生功能性神经元,它们有可能补充和恢复受损的神经元和神经回路。因此,刺激神经发生的药物的开发代表了干细胞治疗和神经再生的一个有前途的策略,在神经变性和脑损伤的情况下,极大地促进了神经回路的重建。我们的研究表明,我们团队先前设计和合成的化合物A5,表现出显著的神经源性活动,有效诱导神经干/祖细胞(NSPCs)的神经发生。随后,使用高通量IlluminaRNA-seq技术进行转录组分析以进一步阐明化合物A5促进神经发生的潜在分子机制。值得注意的是,比较转录组分析表明,上调的基因主要与神经发生有关,下调的基因主要与细胞周期进程有关。此外,我们证实化合物A5显著影响与神经发生和细胞周期调控蛋白相关的转录因子的表达。总的来说,这些发现确定了一种具有神经源性活性的新化合物,并可能为神经修复和再生的药物发现提供见解。
    Adult neurogenesis involves the generation of functional neurons from neural progenitor cells, which have the potential to complement and restore damaged neurons and neural circuits. Therefore, the development of drugs that stimulate neurogenesis represents a promising strategy in stem cell therapy and neural regeneration, greatly facilitating the reconstruction of neural circuits in cases of neurodegeneration and brain injury. Our study reveals that compound A5, previously designed and synthesized by our team, exhibits remarkable neuritogenic activities, effectively inducing neurogenesis in neural stem/progenitor cells (NSPCs). Subsequently, transcriptome analysis using high-throughput Illumina RNA-seq technology was performed to further elucidate the underlying molecular mechanisms by which Compound A5 promotes neurogenesis. Notably, comparative transcriptome analysis showed that the up-regulated genes were mainly associated with neurogenesis, and the down-regulated genes were mainly concerned with cell cycle progression. Furthermore, we confirmed that Compound A5 significantly affected the expression of transcription factors related to neurogenesis and cell cycle regulatory proteins. Collectively, these findings identify a new compound with neurogenic activity and may provide insights into drug discovery for neural repair and regeneration.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    通过利用干细胞的再生潜力来恢复受损的神经组织和电路,基于干细胞的疗法已成为治疗各种神经系统疾病的有希望的方法。这篇全面的综述对干细胞在原发性神经系统疾病中的应用现状进行了深入分析,包括帕金森病(PD),阿尔茨海默病(AD),肌萎缩侧索硬化(ALS),多发性硬化症(MS),中风,脊髓损伤(SCI),和其他相关疾病。这篇综述首先详细介绍了干细胞生物学,讨论类型,来源,以及干细胞在神经治疗中的作用机制。然后严格检查来自动物模型和早期人体试验的临床前证据,可行性,以及不同干细胞类型的功效,如胚胎干细胞(ESC),间充质干细胞(MSCs),神经干细胞,和诱导多能干细胞(iPSC)。虽然已经在临床前模型中广泛研究了ESC,临床试验主要集中在成体干细胞,如MSC和NSC,以及iPSC及其衍生物。我们严格评估每种细胞类型的研究现状,强调它们在不同神经系统疾病中的潜在应用和局限性。这篇综述综合了最近的关键发现,针对每种神经系统疾病的高质量研究,讨论电池制造,交货方式,和治疗结果。虽然干细胞替代丢失的神经元和直接重建神经回路的潜力被强调,该综述强调了旁分泌和免疫调节机制在介导干细胞在大多数神经系统疾病中的治疗作用中的关键作用。本文还探讨了与将干细胞疗法转化为临床实践相关的挑战和局限性。包括与细胞采购相关的问题,可扩展性,安全,和监管方面的考虑。此外,它讨论了推进干细胞治疗的未来方向和机会,比如基因编辑,生物材料,个性化iPSC衍生疗法,和新颖的交付策略。该综述最后强调了干细胞疗法在彻底改变神经系统疾病治疗方面的变革潜力,同时承认需要进行严格的临床试验。标准化协议,和多学科合作,以实现他们充分的治疗承诺。
    Stem cell-based therapies have emerged as a promising approach for treating various neurological disorders by harnessing the regenerative potential of stem cells to restore damaged neural tissue and circuitry. This comprehensive review provides an in-depth analysis of the current state of stem cell applications in primary neurological conditions, including Parkinson\'s disease (PD), Alzheimer\'s disease (AD), amyotrophic lateral sclerosis (ALS), multiple sclerosis (MS), stroke, spinal cord injury (SCI), and other related disorders. The review begins with a detailed introduction to stem cell biology, discussing the types, sources, and mechanisms of action of stem cells in neurological therapies. It then critically examines the preclinical evidence from animal models and early human trials investigating the safety, feasibility, and efficacy of different stem cell types, such as embryonic stem cells (ESCs), mesenchymal stem cells (MSCs), neural stem cells (NSCs), and induced pluripotent stem cells (iPSCs). While ESCs have been studied extensively in preclinical models, clinical trials have primarily focused on adult stem cells such as MSCs and NSCs, as well as iPSCs and their derivatives. We critically assess the current state of research for each cell type, highlighting their potential applications and limitations in different neurological conditions. The review synthesizes key findings from recent, high-quality studies for each neurological condition, discussing cell manufacturing, delivery methods, and therapeutic outcomes. While the potential of stem cells to replace lost neurons and directly reconstruct neural circuits is highlighted, the review emphasizes the critical role of paracrine and immunomodulatory mechanisms in mediating the therapeutic effects of stem cells in most neurological disorders. The article also explores the challenges and limitations associated with translating stem cell therapies into clinical practice, including issues related to cell sourcing, scalability, safety, and regulatory considerations. Furthermore, it discusses future directions and opportunities for advancing stem cell-based treatments, such as gene editing, biomaterials, personalized iPSC-derived therapies, and novel delivery strategies. The review concludes by emphasizing the transformative potential of stem cell therapies in revolutionizing the treatment of neurological disorders while acknowledging the need for rigorous clinical trials, standardized protocols, and multidisciplinary collaboration to realize their full therapeutic promise.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    神经干细胞(NSC)在静止状态和增殖状态之间的转变是大脑发育和稳态的基础。NSC再激活的缺陷与神经发育障碍有关。果蝇静止的NSC向神经纤维延伸富含肌动蛋白的初级突起。然而,肌动蛋白细胞骨架在NSC再激活过程中的功能尚不清楚。这里,我们通过扩展和超分辨率显微镜揭示了静止神经干细胞突起中的细丝状肌动蛋白(F-actin)结构。我们表明,F-肌动蛋白聚合促进myocardin相关转录因子的核易位,一种小头畸形相关的转录因子,用于NSC再激活和大脑发育。F-肌动蛋白聚合受由G蛋白偶联受体Smog组成的信号级联调节,G蛋白αq亚基,Rho1鸟苷三磷酸酶,以及NSC重新激活期间的透明(Dia)/Formin。Further,星形胶质细胞分泌Smog配体折叠的胃泌以调节Gαq-Rho1-Dia介导的NSC再激活。一起,我们确定Smog-Gαq-Rho1信号轴来自星形胶质细胞,NSC利基市场,调节NSC再激活中Dia介导的F-肌动蛋白动力学。
    The transitioning of neural stem cells (NSCs) between quiescent and proliferative states is fundamental for brain development and homeostasis. Defects in NSC reactivation are associated with neurodevelopmental disorders. Drosophila quiescent NSCs extend an actin-rich primary protrusion toward the neuropil. However, the function of the actin cytoskeleton during NSC reactivation is unknown. Here, we reveal the fine filamentous actin (F-actin) structures in the protrusions of quiescent NSCs by expansion and super-resolution microscopy. We show that F-actin polymerization promotes the nuclear translocation of myocardin-related transcription factor, a microcephaly-associated transcription factor, for NSC reactivation and brain development. F-actin polymerization is regulated by a signaling cascade composed of G protein-coupled receptor Smog, G protein αq subunit, Rho1 guanosine triphosphatase, and Diaphanous (Dia)/Formin during NSC reactivation. Further, astrocytes secrete a Smog ligand folded gastrulation to regulate Gαq-Rho1-Dia-mediated NSC reactivation. Together, we establish that the Smog-Gαq-Rho1 signaling axis derived from astrocytes, an NSC niche, regulates Dia-mediated F-actin dynamics in NSC reactivation.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

公众号